![图像去噪在火焰识别中的应用研究_第1页](http://file4.renrendoc.com/view11/M01/29/39/wKhkGWXf69-AZAmVAALyyCGMZLc089.jpg)
![图像去噪在火焰识别中的应用研究_第2页](http://file4.renrendoc.com/view11/M01/29/39/wKhkGWXf69-AZAmVAALyyCGMZLc0892.jpg)
![图像去噪在火焰识别中的应用研究_第3页](http://file4.renrendoc.com/view11/M01/29/39/wKhkGWXf69-AZAmVAALyyCGMZLc0893.jpg)
![图像去噪在火焰识别中的应用研究_第4页](http://file4.renrendoc.com/view11/M01/29/39/wKhkGWXf69-AZAmVAALyyCGMZLc0894.jpg)
![图像去噪在火焰识别中的应用研究_第5页](http://file4.renrendoc.com/view11/M01/29/39/wKhkGWXf69-AZAmVAALyyCGMZLc0895.jpg)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要:针对火灾现场视频中有可能存在的图像噪声的情况,文章通过中值滤波、均值滤波、理想低通滤波和小波变换去噪等方法处理含噪火焰图像,分析其峰值信噪比(PSNR)和去噪图像等特征,选择处理效果较好的均值滤波和小波变换阈值去噪;并进一步对均值滤波图像、小波变换的软阈值去噪和硬阈值去噪图像进行火焰分割,分析去噪效果在火灾识别中的应用效果。经实验知,均值滤波在分割火焰的面积识别上更接近无噪声的火焰分割面积,小波变换的去噪火焰分割视觉效果上更贴合无噪声火焰图像。关键词:均值滤波;小波变换;图像去噪;火焰识别火灾一直以来都严重威胁着人类的生命和财产安全,影响着社会的稳定。在火灾事故中,现场调查人员通过对火灾现场的调查可以帮助查明火灾原因,总结火灾经验,对于预防火灾有着极其重要的作用。随着社会和科技的发展,近年来,视频火灾的侦查技术成为火灾调查新的研究热点。调查人员通过对火灾现场相关的视频和图像进行技术分析,进一步判断火灾起火点、起火原因以及火灾发展过程。而现场采集的视频图像在拍摄、采集、传输、处理等过程中,会因为各种不可避免的原因引入噪声,从而导致采集到的火灾现场图像不清晰,造成图像质量下降,影响计算机对现场火焰的提取和分析[1]。图像去噪在有效去除图像噪声的基础上,可以较好地保留图像原有信息,目前常见的图像去噪方法有中值滤波、均值滤波、理想低通滤波等,这些算法对图像去噪都有一定的效果,但是在处理过程中会造成高频细节成分缺失,丢失图像边缘细节信息。基于小波变换的图像去噪,可以随着小波分解尺度实时改变,适应性强,但是在阈值的选取上要求较高,重构后的图像精度会有所降低[2]。一、图像滤波中值滤波和均值滤波为传统的空间域滤波,是通过对含噪图像的像素点直接进行抑制来消除图像中噪点的;理想低通滤波为频率滤波,由于图像中灰度变化较为剧烈的点一般为图像轮廓或者是噪声,理想低通滤波通过滤掉高频部分,仅允许低频通过来去除噪声,使图像平滑,但同时会丢失部分边缘信息。(一)中值滤波中值滤波主要采用灰度值排序,把数字图像中一点的值用该点的一个邻域中各个点值的中值代替,依次取代像素中心的灰度值,让原本与周围像素灰度值相差较大的像素值更改为与周围像素值比较接近的值,从而消除孤立点。设f(x,y)表示一幅大小M×N的图像,则中值滤波算法的公式见式(1):式中,f(x,y)表示中值滤波的输出图像,Sx,y表示图像中心在(x,y)处。(二)均值滤波均值滤波是将图像中某点周围邻域中所有像素值的灰度值相加求平均值,用所求的平均值来代替原来该点的灰度值。设A为包含像素(i,j)在内的邻域点的集合,(x,y)为集合中的像素,f(x,y)为像素(x,y)处的灰度值,则均值滤波后在像素(x,y)处的灰度值可表示见式(2)[3]:式中,M是邻域像素点总数。(三)理想低通滤波在频率域中,通过滤波器函数衰减高频信息而使低频信息畅通无阻的过程被称为低通滤波。图像的细节和噪声多存在于高频部分,对图像进行低通滤波可以起到平滑抑躁的作用。理想的低通滤波传递函数见式(3)[4]:(四)去噪结果分析对于以上三种去噪方法,文章在Matlab2020a环境下,选取木材燃烧的火焰图像作为实验对象进行去噪处理。第一,选取木材燃烧图像作为实验图像,进行灰度处理作为对比图像(如图1a所示),然后加入方差为0.01的高斯噪聲,获得含噪图像(如图1b所示);第二,对含高斯噪声的图像分别进行中值滤波(如图1c所示)、均值滤波(邻域空间3*3)(如图1d所示)和理想低通滤波(截止频率80)(如图1e所示)处理,得到不同处理的去噪图像;第三,对去噪后图像进行画面的直观对比,并进一步计算其峰值信噪比(PSNR)(如表1所示),进行深入比较。从图1可以看出,中值滤波去噪效果不明显,图像中噪声仍然很明显,均值滤波和理想低通滤波去噪效果优于中值滤波,但均值滤波去噪图像中仍然有噪声存在,低通滤波由于处理中过渡较为急峻,所以会产生振铃现象,导致去噪后的图像火焰边缘模糊,丢失部分图像信息。从表1可以看出,均值滤波和理想低通滤波的峰值信噪比均达到19以上,而中值滤波的峰值信噪比仅为12.4668,与含噪图像的11.11相差无几。综合来看,均值滤波的去噪效果更好。二、小波变换去噪小波变换是一种较为理想的时间-频率分析方法,在时域和频域空间内都可以较好地表征图像局部特征,在图像去噪、图像融合、边缘检测等方面都有较好的效果。基于小波变换去噪的方法是利用多分辨分析技术,利用小波变换将含噪图像进行多层分解,得到小波高频系数和小波低频系数,其中噪声信息主要存在于高频系数中,图像的有效信息存在于低频系数中。通过设置合适的阈值将小波高频系数中的噪声信息分离并置零,再利用小波阈值函数对小波高频系数进行重建,得到去噪后的图像。常用的阈值函数包括硬阈值函数和软阈值函数两大类。(一)硬阈值去噪当小波系数小于某个临界阈值时,认为当时的小波系数主要是由噪声引起的,应该舍弃;当小波系数大于这个临界阈值时,认为这时的小波系数主要是由信号引起的,应该把小波系数直接保留下来。函数表示为:(二)软阈值去噪进行比较含噪信号的小波系数与选定阈值大小,大于阈值的点收缩为该点值与阈值的差值,小于阈值相反数的点收缩为该点值与阈值和,绝对值小于等于阈值的点为0。函数表示为:(三)阈值的选择选择合适的阈值,是小波去噪的重要步骤,目前常见的阈值计算方法为:(四)去噪结果分析090979A1-7C53-485B-A43A-B8E55FEBACCD对于以上小波变换的阈值去噪方法,文章在Matlab2020a环境下,选取木材燃烧的火焰图像作为实验对象进行去噪处理。第一,选取木材燃烧图像作为实验图像,进行灰度处理作为对比图像(如图2a所示),然后加入方差为0.01的高斯噪声,获得含噪图像(如图2b所示);第二,对含高斯噪声的图像选取sym3小波基对图像分别进行软阈值(如图2c所示)和硬阈值(如图2d所示)的分解和重构,获得不同处理的去噪图像;第三,对去噪后图像进行画面的直观对比,并进一步计算其峰值信噪比(PSNR)(如表2所示),进行深入比较。从图2可以看出,小波变换阈值去噪对于高斯噪声有较强的去噪效果,软阈值去噪处理结果较为平滑但是会造成边缘失真现象;硬阈值去噪可以很好地保留图像边缘信息的局部特征,但重构的信号会产生一些振铃,导致视觉失真。从表2峰值信噪比可知,软阈值去噪的信噪比达到21.4668,硬阈值去噪的信噪比达到19.6371,两种方法均有较好的去噪效果。三、应用实验结果火焰目标提取和分割是火灾识别的关键环节,当前对于火焰的识别主要是基于面积变化、火焰色彩、纹理等特征,在火灾调查中,快速准确的识别到视频中火焰形态及火焰面积变化,对火灾的识别和认定至关重要。文章选择在均值滤波和小波变换去噪的基础上,通过对火焰面积的分割与识别来检验图像处理效果并进行火焰识别对比。第一,基于Matlab2020a软件,对火焰灰度图像(如图3a所示)加入0.01的高斯噪声,获得含噪图像(如图3c所示);第二,对含噪火焰图像分别进行均值滤波去噪和小波变换阈值去噪,获得去噪图像;第三,对以上去噪图像进行全阈值迭代法分割(如图3b、3d、3f、3h、3j所示),实现图像中火焰的分割提取;第四,基于Matlab计算图像分割后火焰面积(分割图像像素和)(如表3所示)。从图3可以看出,均值去噪后的火焰图像分割后,边缘仍然较为粗糙,画面中噪点没有很好的去除,软阈值分割和硬阈值分割的图像边缘较为顺滑,从形态上来看更贴近火焰的形态,但是丢失了一部分细节;从分割图像的面积上来看,均值去噪的分割面积更接近原图分割面积,而软阈值去噪的分割和硬阈值去噪的分割面积分别高于和低于原图的分割面积。故从火焰形态上来看,软阈值分割和硬阈值分割更接近原火焰形态,从面积上来说,均值滤波分割的面积和原火焰分割面积更接近。四、结论文章采用均值滤波、小波变换阈值去噪等多种常见图像去噪方法来处理火焰含噪图像,并通过火灾检测中常用的图像分割和面积计算的方法检验图像去噪效果。实验表明,均值滤波和小波变换阈值去噪对含噪火焰图像均有较好的去噪效果。同时,均值滤波图像的分割面积更接近无噪声火焰图像分割面积,表明均值滤波对火焰边缘的模糊程度较轻,但同时保留了部分火焰边缘噪声
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 男性在商业领域的个人成长规划
- 电子商务物流配送的技术创新与应用
- 学校月度工作总结
- 电子商务中的价格策略与运营管理
- 地理-湖南省佩佩教育湖南省长沙市四大名校2025届高三下学期2月联考试题和答案
- 现代建筑设计与科技创新的互动关系
- 知识经济时代的科技创新与知识产法保护
- 会员推广合作协议书范本
- 网络服务实施协议书(2篇)
- 养老院入住合同范本
- 土建工程技术标范本(DOC167页)
- 班级管理(课件).ppt
- 秋装校服供货售后保障方案
- 恶性肿瘤化疗后重度骨髓抑制病人的护理论文
- cmu200_中文使用详细说明
- 英语句子成分结构讲解
- 注塑参数DOE分析范例
- 综合布线类项目施工图解(共21页)
- 圆锥曲线方程复习
- 招生代理合作协议书
- (完整版)初中地理课程标准-人教版
评论
0/150
提交评论