高中数学必修2第1章1.2.1平面的基本性质作业_第1页
高中数学必修2第1章1.2.1平面的基本性质作业_第2页
高中数学必修2第1章1.2.1平面的基本性质作业_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

[学业水平训练]1.下列说法中正确的个数为________.①过三点至少有一个平面;②过四点不一定有一个平面;③不在同一平面内的四点最多可确定4个平面.解析:①正确,其中三点不共线时,有且仅有一个平面.三点共线时,有无数个平面;②正确,四点不一定共面;③正确.答案:32.线段AB在平面α内,则直线AB与平面α的位置关系是________.解析:因为线段AB在平面α内,所以A∈α,B∈α.由公理1知直线AB⊂平面α.答案:直线AB⊂平面α3.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α________.(2)α∩β=a,P∉α且P∉β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.解析:(1)图C符合A∉α,a⊂α;(2)图D符合α∩β=a,P∉α且P∉β;(3)图A符合a⊄α,a∩α=A;(4)图B符合α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O.答案:(1)C(2)D(3)A(4)B4.①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形.空间中,上述四个结论一定成立的是________.(填上所有你认为正确的命题的序号)解析:空间中,两组对边分别相等的四边形不一定是平行四边形,如图所示.答案:①②④5.空间有四个点,如果其中任意三点都不共线,那么经过其中三个点的平面有________个.解析:当四点共面时,经过三点的平面有1个;四点不共面时,经过其中的三点可画四个平面.答案:一或四6.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.解析:当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.答案:1或2或37.在正方体ABCDA1B1C1D1中,判断下列说法是否正确,并说明理由.(1)直线AC1在平面CC1B1B内;(2)设正方形ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D的交线为OO1;(3)由A,C1,B1确定的平面是ADC1B1;(4)由A,C1,B1确定的平面与由A、C1、D确定的平面是同一个平面.解:(1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.∵O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,∴平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,∵AD∥B1C1且AD=B1C1,∴四边形AB1C1D是平行四边形,∴A,B1,C1,D共面.8.已知正方体ABCDA1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:如图.(1)∵EF是△D1B1C1的中位线,∴EF∥B1D1,在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF、BD确定一个平面,即D,B,F,E四点共面.(2)正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.则Q是α与β的公共点,同理P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故P,Q,R三点共线.[高考水平训练]1.A、B、C、D为不共面的四点,E、F、G、H分别在AB、BC、CD、DA上,(1)如果EH∩FG=P,那么点P在________上;(2)如果EF∩GH=Q,那么点Q在________上.解析:(1)如图,由AB、AD确定平面α.∵E、H在AB、DA上,∴E∈α,H∈α,∴直线EH⊂α,又∵EH∩FG=P,∴P∈EH,P∈α.设BC、CD确定平面β,同理可证,P∈β,∴P是平面α,β的公共点,∵α∩β=BD,∴点P在直线BD上.同理可证(2)点Q在直线AC上.答案:(1)BD所在的直线(2)AC所在的直线2.在如图所示的正方体中,P,Q,R,S分别是所在棱的中点,则使这四个点共面的图是________(填序号).解析:图①中PS∥QR,∴P、Q、R、S四点共面;图②中,连结PS并延长交右上方棱的延长线于M.连结MR并延长,交右下方的棱于N.连结NQ,可知P、S、N、Q共面,所以P、Q、R、S四点共面.图③中SR∥PQ,∴P、Q、R、S四点共面.答案:①②③3.如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊eq\f(1,2)AD,BE綊eq\f(1,2)AF,证明:C,D,E,F四点共面.证明:如图所示,延长DC交AB的延长线于点G,由BC綊eq\f(1,2)AD,得eq\f(GB,GA)=eq\f(GC,GD)=eq\f(BC,AD)=eq\f(1,2).延长FE交AB的延长线于点G′,同理可得eq\f(G′E,G′F)=eq\f(G′B,G′A)=eq\f(BE,AF)=eq\f(1,2).故eq\f(G′B,G′A)=eq\f(GB,GA),即G与G′重合,因此直线CD、EF相交于点G,即C,D,E,F四点共面.4.如图,定线段AB所在的直线与定平面α相交,交点为O,P为定直线外一点,P∉α,直线AP,BP与平面α分别相交于A′,B′,试问,如果P点任意移动,直线A′B′是否恒过一定点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论