人工智能 第2版 课件 AI04不确定性推理_第1页
人工智能 第2版 课件 AI04不确定性推理_第2页
人工智能 第2版 课件 AI04不确定性推理_第3页
人工智能 第2版 课件 AI04不确定性推理_第4页
人工智能 第2版 课件 AI04不确定性推理_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人工智能

ArtificialIntelligence

第四章不确定性推理UncertaintyReasoning人工智能:不确定性推理12024/2/27人工智能:不确定性推理2内容提要4.1概述

4.2可信度方法 4.3主观贝叶斯方法 4.4证据理论 4.5模糊逻辑和模糊推理 4.6小结 2024/2/27基本概念什么是不确定性推理?不确定性推理是建立在非经典逻辑上的一种推理,是对不确定性知识的运用与处理是从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却合理或者近乎合理的结论的思维过程为什么要研究不确定性推理?日常生活中含有大量的不确定的信息ES系统中大量的领域知识和专家经验,不可避免的包含各种不确定性。人工智能:不确定性推理32024/2/27基本概念不确定性推理的基本问题:表示问题:即采用什么方法描述不确定性.一般有数值表示和非数值的语义表示方法.计算问题:主要指不确定性的传播和更新,也即获得新信息的过程.主要包括:已知C(A),ABf(B,A),如何计算C(B)已知C1(A),又得到C2(A),如何确定C(A)如何由C(A1),C(A2)计算C(A1

A2),C(A1

A2)

语义问题:指的是上述表示和计算的含义是什么,如何进行解释.人工智能:不确定性推理42024/2/27基本概念不确定推理方法的分类形式化方法:在推理一级扩展确定性方法.逻辑方法:是非数值方法,采用多值逻辑、非单调逻辑来处理不确定性新计算方法:认为概率方法不足以描述不确定性,出现了确定性理论,确定性因子,模糊逻辑方法等新概率方法:在传统的概率框架内,采用新的计算工具以确定不确定性描述非形式化方法:在控制一级上处理不确定性如制导回溯、启发式搜索等等人工智能:不确定性推理52024/2/27人工智能:不确定性推理6内容提要4.1概述 4.2可信度方法

4.3主观贝叶斯方法 4.4证据理论 4.5模糊逻辑和模糊推理 4.6小结 2024/2/27知识的不确定性表示产生式规则:

IfEThenH(CF(H,E))CF(H,E)是该条知识的可信度,称为可信度因子或规则强度,表示当前提条件E所对应的证据为真时,它对结论H为真的支持程度。CF是根据经验对一个事物或现象为真的可信程度的度量CF(H,E)取值为:[-1,1],人工智能:不确定性推理72024/2/27知识的不确定性表示CF定义:

CF(H,E)=MB(H,E)-MD(H,E)MB:信任增长度,它表示因与前提条件E匹配的证据的出现,使结论H为真的信任增长度MD:不信任增长度,它表示因与前提条件E匹配的证据的出现,对结论H的不信任增长度人工智能:不确定性推理82024/2/27知识的不确定性表示MB的定义:由条件概率和先验概率定义

1若P(H)=1MB(H,E)=max{P(H|E),P(H)}–P(H--------------------------------否则1-P(H)MD的定义:1若P(H)=0MD(H,E)=min{P(H|E),P(H)}–P(H)-----------------------------------否则-P(H)人工智能:不确定性推理92024/2/27知识的不确定性表示MB的定义:由条件概率和先验概率定义

1

若P(H)=1MB(H,E)=max{P(H|E),P(H)}–P(H)-----------------------------------否则1-P(H)MD的定义:1

若P(H)=0MD(H,E)=min{P(H|E),P(H)}–P(H)-----------------------------------否则-P(H)人工智能:不确定性推理102024/2/27知识的不确定性表示MB(H,E)和MD(H,E)是互斥的:即一个证据不能既增加对H的信任度,又不能同时增加对H的不信任度当MB(H,E)>0,MD(H,E)=0

当MD(H,E)>0,MB(H,E)=0人工智能:不确定性推理112024/2/27知识的不确定性表示CF(H,E)的直观意义:(1)CF(H,E)>0,则P(H|E)>P(H):E的出现增加了H为真的概率,增加了H为真的可信度(2)CF(H,E)<0,则P(H|E)<P(H):E的出现减少了H为真的概率,增加了H为假的可信度(3)CF(H,E)=0,则P(H|E)=P(H):表示H与E独立,即E的出现对H没有影响CF(H,E)几个特殊的值:(1)前提真,则结论必真,即P(H|E)=1,有CF(H,E)=1(2)前提真,而结论必假,即P(H|E)=0,有CF(H,E)=-1(3)前提与结论无关,即P(H|E)=P(H),有CF(H,B)=0人工智能:不确定性推理122024/2/27证据的不确定性表示证据的不确定性也用CF来表示CF值的来源分两种情况:初始证据:由提供证据的用户给出以前的结论作为新证据:由传递算法推出证据的CF取值范围:[-1,1]E肯定为真时:CF(E)=1E肯定为假时:CF(E)=-1对E一无所知时:CF(E)=0CF(E)>0表示E以CF(E)为真CF(E)<0表示E以CF(E)为假人工智能:不确定性推理132024/2/27组合证据不确定性算法(1)E=E1

E2

En如果已知CF(E1),…,CF(En),则:

CF(E)=min{CF(E1),…,CF(En)}(2)E=E1

E2

En如果已知CF(E1),…,CF(En),则:

CF(E)=max{CF(E1),…,CF(En)}人工智能:不确定性推理142024/2/27不确定性的传递算法已知:CF(E)EHCF(H,E)

则规定:CF(H)=CF(H,E)max{0,CF(E)}规定:CF(~E)=-CF(E)当证据为假时:CF(H)=0,即该模型没有考虑证据为假时对H所产生的影响当证据为真时,CF(H,E)实际上就是结论H的可信度CF(H)人工智能:不确定性推理152024/2/27结论不确定性合成算法r1:ifE1thenH(CF(H,E1))r2:ifE2thenH(CF(H,E2))求合成的CF(H)(1)首先对每条知识求出CF(H),即:

CF1(H)=CF(H,E1)max{0,CF(E1)}CF2(H)=CF(H,E2)max{0,CF(E2)}(2)规定:

CF1(H)+CF2(H)-CF1(H)CF2(H)CF1(H)>=0,CF2(H)>=0CF(H)=CF1(H)+CF2(H)+CF1(H)CF2(H)CF1(H)<0,CF2(H)<0CF1(H)+CF2(H)其他人工智能:不确定性推理162024/2/27可信度模型----例一

r1:A1

B1CF(B1,A1)=0.8

r2:A2

B1CF(B1,A2)=0.5

r3:B1A3

B2CF(B2,B1A3)=0.8初始证据A1,A2,A3的CF值均设为1,而初始未知证据B1,B2的CF值为0,即对B1,B2是一无所知的。求:CF(B1),CF(B2)的更新值人工智能:不确定性推理172024/2/27可信度模型----例二

r1:A1

B1CF(B1,A1)=0.8

r2:A2

B1CF(B1,A2)=0.6初始证据A1,A2的CF值均设为0.5,而初始未知证据B1的CF值为0.1。求:CF(B1)的更新值人工智能:不确定性推理182024/2/27人工智能:不确定性推理19内容提要4.1概述 4.2可信度方法 4.3主观贝叶斯方法 4.4证据理论 4.5模糊逻辑和模糊推理 4.6小结 2024/2/27主观Bayes方法1976年提出的,应用于地矿勘探专家系统Prospector中不确定推理系统包括:不确定性的表示:规则/知识事实/证据不确定性的计算组合证据的不确定算法不确定性的传递算法结论的不确定算法人工智能:不确定性推理202024/2/27规则不确定的表示

ifEthen(LS,LN)H

(P(H))(1)E是规则的前提条件,H是结论,P(H)是H的先验概率,是指在没有任何证据的情况下结论H为真的概率。(2)LS是充分性度量:表示E对H的支持程度,取值范围[0,+),其定义为:

P(E/H)LS=------------------P(E/~H)人工智能:不确定性推理212024/2/27规则不确定的表示(3)LN是必要性度量:表示~E对H的支持程度,取值范围[0,+),其定义为:

P(~E/H)1-P(E/H)LN=---------------=----------------P(~E/~H)1-P(E/~H)人工智能:不确定性推理222024/2/27证据不确定的表示对于初始证据E,由用户根据观察S给出P(E/S).引入可信度函数C(E/S):(1)C(E/S)=-5,表示在S下,E肯定不存在P(E/S)=0(2)C(E/S)=0,表示在S与E无关,P(E/S)=P(E)(3)C(E/S)=5,表示在S下,E肯定存在,P(E/S)=1(4)C(E/S)为其他值的时候,P(E/S)可以通过线性插值得到。人工智能:不确定性推理232024/2/27组合证据不确定的表示(1)E=E1

E2

En如果已知P(E1/S),…,P(En/S),则:

P(En/S)=min{P(E1/S),…,P(En/S)}(2)E=E1

E2

En如果已知P(E1/S),…,P(En/S),则:

P(En/S)=max{P(E1/S),…,P(En/S)}(3)对于“非”:

P(~E/S)=1-P(E/S)人工智能:不确定性推理242024/2/27不确定性的传递算法主观Bayes方法推理的任务就是根据证据E的概率P(E)和LS,LN的值,把H的先验概率P(H)更新为P(H/E)或P(H/~E)。分下面三种情况讨论:证据肯定存在证据肯定不存在证据不确定人工智能:不确定性推理252024/2/27证据肯定存在证据肯定存在时:P(E)=P(E/S)=1P(H/E)=P(H)

P(E/H)/P(E)P(~H/E)=P(~H)

P(E/~H)/P(E)

P(H/E)P(H)P(E/H)----------=---------------------P(~H/E)P(~H)P(E/~H)引入几率函数O(x)定义为:

O(x)=P(x)/(1-P(x)),P(x)=O(x)/(1+O(x))人工智能:不确定性推理262024/2/27证据肯定存在

O(H/E)=LSO(H)P(H/E)=LS

P(H)/((LS-1)

P(H)+1)LS的意义:(1)LS>1时,O(H/E)>O(H),P(H/E)>P(H),说明E的存在将增强H为真的概率。E的存在对H为真是充分的,所以称LS为充分性度量(2)LS=1时,O(H/E)=O(H)(3)LS<1时,O(H/E)<O(H),E导致H为真的可能性下降(4)LS=0时,O(H/E)=0,E的存在将使H为假人工智能:不确定性推理272024/2/27证据肯定不存在证据肯定不存在时:P(E)=P(E/S)=0,P(~E)=1P(H/~E)=P(H)

P(~E/H)/P(~E)P(~H/~E)=P(~H)

P(~E/~H)/P(~E)

P(H/~E)P(H)P(~E/H)------------=-----------------------P(~H/~E)P(~H)P(~E/~H)O(H/~E)=LNO(H)P(H/~E)=LN

P(H)/((LN-1)

P(H)+1)人工智能:不确定性推理282024/2/27证据肯定不存在LN的意义:(1)LN>1时,O(H/~E)>O(H),P(H/~E)>P(H),说明E的不存在将增强H为真的概率。(2)LN=1时,O(H/~E)=O(H)(3)LN<1时,O(H/~E)<O(H),E的不存在导致H为真的可能性下降,即E的不存在将反对H为真,说明E对H为真的必要性(4)LN=0时,O(H/~E)=0,E的不存在将使H为假。这里也可以看出E对H为真的必要性,所以也称LN为必要性度量人工智能:不确定性推理292024/2/27不确定性的传递算法从上面讨论知:(1)若E越是支持H为真时,则应使LS越大(2)若E对H越是必要时,则应使LN越小LS、LN的取值情况:LS0,LN0只能出现:但不能出现:

LS<1,LN>1LS>1,LN>1LS>1,LN<1

LS<1,LN<1

LS=LN=1人工智能:不确定性推理302024/2/27例一设有如下知识:r1:ifE1then(10,1)H1(0.03)r2:ifE2then(20,1)H2(0.05)r3:ifE3then(1,0.002)H3(0.3)求:当证据存在及不存在时,P(Hi/Ei)及P(Hi/~Ei)的值各是多少人工智能:不确定性推理312024/2/27证据不确定证据不定时:0<P(E/S)<1,后验概率为:

P(H/S)=P(H/E)

P(E/S)+P(H/~E)

P(~E/S)分四种情况讨论如下:(1)P(E/S)=1则有P(~E/S)=0,证据肯定存在(2)P(E/S)=0则有P(~E/S)=1,证据肯定不存在(3)P(E/S)=P(E),说明E和S无关

P(H/S)=P(H)人工智能:不确定性推理322024/2/27证据不确定(4)当P(E/S)为其他值的时候,通过分段插值计算P(H/S)的值。0P(E/S)1P(E)P(H/~E)P(H)P(H/E)P(H/S)人工智能:不确定性推理332024/2/27例二当证据E必然发生,H1的先验概率0.03,H2的先验概率0.01,且有规则:r1:ifEthen(20,1)H1

r2:ifH1then(300,0.0001)H2求:P(H2|E)人工智能:不确定性推理342024/2/27结论不确定性的合成

若有n条知识都支持相同的结论,而且每条知识的前提所对应的证据Ei(i=1,…,n)都有相应的观察Si与之对应,此时只要先对每条知识分别求出O(H/Si)然后就可用下式求出结论不确定性的合成:

O(H/S1,…,Sn)=

O(H/S1)O(H/Sn)----------------------…---------------------------

O(H)

O(H)O(H)人工智能:不确定性推理352024/2/27例三当证据E1、E2、E3、E4必然发生后,H的先验概率为0.03,且有规则则:r1:ifE1then(20,1)Hr2:ifE2then(300,1)H求:结论H的概率变化化.人工智能:不确定性推理362024/2/27人工智能:不确定性推理37内容提要4.1概述 4.2可信度方法 4.3主观贝叶斯方法 4.4证据理论

4.5模糊逻辑和模糊推理 4.6小结 2024/2/27证据理论证据理论(TheoryofEvidence)也称为D-S(Dempster-Shafer)理论。证据理论最早基于德姆斯特(DempsterAP)所做的工作,他试图用一个概率范围而不是单个的概率值去模拟不确定性。谢弗(ShaferGA)进一步拓展了德姆斯特的工作,这一拓展称为证据推理[Shafer1976],用于处理不确定性、不精确以及间或不准确的信息。由于证据理论将概率论中的单点赋值扩展为集合赋值,弱化了相应的公理系统,满足了比概率更弱的要求,因此可看作一种广义概率论。人工智能:不确定性推理382024/2/27证据理论在D-S理论中,可以分别用信任函数、似然函数及类概率函数来描述知识的精确信任度、不可驳斥信任度及估计信任度,即可以从各个不同角度刻画命题的不确定性。D-S理论采用集合来表示命题,为此,首先应该建立命题与集合之间的一一对应关系,把命题的不确定性问题转化为集合的不确定性问题。人工智能:不确定性推理392024/2/27概率分配函数定义:U为样本空间,设函数M:2U[0,1],且满足:M()=0

AUM(A)=1

则称M为2U上的概率分配函数,M(A)称为A的基本概率数(1)M(A)的作用是把U的任意一个子集A都映射为[0,1]上的一个数M(A)。它表示证据对U的子集A成立的一种信任度量,是对U的子集的信任分配。(2)概率分配函数不是概率。人工智能:不确定性推理402024/2/27证据理论例:U={红,黄,蓝}假设:M({红})=0.3,M({黄})=0,M({蓝})=0.1,

M({红,黄})=0.2,M({红,蓝})=0.2,

M({黄,蓝})=0.1,

M({红,黄,蓝})=0.1,M({})=0人工智能:不确定性推理412024/2/27信任函数定义:命题的信任函数Bel:2U[0,1],且

Bel(A)=

BAM(B)对所有的AU(1)命题A的信任函数的值,是A的所有子集的基本概率分配函数值的和,用来表示对A的总的信任(2)

Bel函数又称为下限函数(3)Bel()=M()=0

Bel(U)=

BUM(B)=1人工智能:不确定性推理422024/2/27似然函数定义:似然函数Pl:2U[0,1],且

Pl(A)=1-Bel(~A)对所有的AU(1)Bel(A)表示对A为真的信任度,则Bel(~A)表示对~A为真,即A为假的信任度,所以Pl(A)表示A非假的信任度,它又称为上限函数。(2)

Pl(A)=1-Bel(~A)=ABM(B)(3)0Bel(A)

Pl(A)

1(4)Pl(A)-Bel(A):表示既不信任A,也不信任~A的一种度量,可表示对不知道的度量人工智能:不确定性推理432024/2/27证据的不确定性度量(1)以区间(Bel(A),Pl(A))作为证据A的不确定性度量:表示了对A信任程度的上限和下限。

A(0,0):表示A为假

A(0,1):表示对A一无所知

A(1,1):表示A为真(2)以函数:

f1(A)=Bel(A)+(|A|

|U|)(Pl(A)-Bel(A))表示证据A的不确定性度量。

f1(

)=0,f1(U)=10

f1(A)1AU人工智能:不确定性推理442024/2/27规则的不确定性度量设U={u1,…,un},A和B为U的子集,如:

A={a1,…,am},B={b1,…,bk}规则表示如下:

AB={b1,…,bk}{c1,…,ck}(1)B是结论,用样本空间的子集表示,b1,…,bk是该子集中的元素(2)c1,…,ck表示规则的不确定性度量,ci表示bi的可信度(3)ci0,ni=1ci1人工智能:不确定性推理452024/2/27推理计算f1(A1

A2)=min{f1(A1),f1(A2)}f1(A1

A2)=max{f1(A1),f1(A2)}

已知f1(A)AB={b1,…,bk}{c1,…,ck},求f1(B)

(1)求出B的概率分配函数

M(B)=M({b1},…,{bk})={f1(A)

c1,…,f1(A)ck}M(U)=1-

ki=1f1(A)

ci

人工智能:不确定性推理462024/2/27推理计算如果有两条知识支持同一条结论:

A1B={b1,…,bk}{c1,…,ck},A2B={b1,…,bk}{c1,…,ck},则首先分别对每一条知识求出概率分配函数:

M1({b1},…,{bk})M2({b1},…,{bk})然后由:M=M1

M2求出结论B的概率分配函数M人工智能:不确定性推理472024/2/27推理计算概率分配函数的合成定义:设M1和M2是两个概率分配函数,则合成M=M1

M2定义为:

M()=0M(A)=K

XY=AM1(X)

M2(Y)

其中x,y是U的子集,并且:

K-1=1-

XY=M1(X)

M2(Y)

=

XYM1(X)

M2(Y)人工智能:不确定性推理482024/2/27推理计算概率分配函数的合成示例:例一:设U={黑,白},且

M1({黑},{白},{黑,白},

)=(0.3,0.5,0.2,0)

M2({黑},{白},{黑,白},

)=(0.6,0.3,0.1,0)例二:设U={a,b,c,d}M1({b,c,d},U)=(0.7,0.3)M2({a,b},U)=(0.6,0.4)

人工智能:不确定性推理492024/2/27推理计算

求出Bel(B),Pl(B),f1(B)

Bel(B)=

ABM(A)

Pl(B)=1-Bel(~B)f1(B)=Bel(B)+(|B|

|U|)(Pl(B)-Bel(B))人工智能:不确定性推理502024/2/27证据理论示例例一:已知f1(A1)=0.8,f1(A2)=0.6,|U|=20A1

A2B={b1,b2}(c1,c2)=(0.3,0.5)求:f1(B)例二:已知f1(A1)=0.53,f1(A2)=0.52,|U|=20A1B={b1,b2,b3}(c1,c2,c3)=(0.1,0.5,0,3)A2B={b1,b2,b3}(c1,c2,c3)=(0.4,0.2,0,1)求:f1(B)人工智能:不确定性推理512024/2/27人工智能:不确定性推理52内容提要4.1概述 4.2可信度方法 4.3主观贝叶斯方法 4.4证据理论 4.5模糊逻辑和模糊推理

4.6小结 2024/2/27模糊推理处理随机性的理论基础是概率论处理模糊性的基础是模糊集合论本节主要内容:模糊集合与操作语言变量模糊推理人工智能:不确定性推理532024/2/27模糊集合与操作经典集合是清晰的,即:一个元素x是否属于某一个集合A是明确的,要么x属于A,要么x不属于A,两者必居其一,而且只能居其一。

C(x)为特征函数人工智能:不确定性推理542024/2/27模糊集合定义1设U是一个论域,U到区间[0,1]的一个映射μ:U[0,1]就确定了U的一个模糊子集A。映射μ称为A的隶属函数,记为μA(u)。对于任意的u∈U,μA(u)∈[0,1]称为u属于模糊子集A的程度,简称隶属度。模糊集合与操作人工智能:不确定性推理552024/2/27由定义,模糊集合完全由其隶属函数确定,即一个模糊集合与其隶属函数是等价的。可以看出,对于模糊集A,当U中的元素u的隶属度全为0时,则A就是个空集;反之,当全为1时,A就是全集U;当仅取0和1时,A就是普通子集。这就是说,模糊子集实际是普通子集的推广,而普通子集就是模糊子集的特例。论域U上的模糊集合A,一般可记为模糊集合与操作人工智能:不确定性推理562024/2/27或

对于有限论域U,甚至也可表示成

模糊集合与操作人工智能:不确定性推理572024/2/27通常所说的“高个”、“矮个”、“中等个”就是三个关于身高的语言值。我们用模糊集合为它们建模。取人类的身高范围[1.0,3.0]为论域U,在U上定义隶属函数μ矮(x)、μ中等(x)、μ高(x)如下(函数图像如图8-5所示)。这三个隶属函数就确定了U上的三个模糊集合,它们也就是相应三个语言值的数学模型。模糊集合例子人工智能:不确定性推理582024/2/27模糊集合例子人工智能:不确定性推理592024/2/27身高论域上的模糊集“矮”、“中等”、“高”的隶属函数模糊集合例子人工智能:不确定性推理602024/2/27

除了有些性质概念是模糊概念外,还存在不少模糊的关系概念。如“远大于”、“基本相同”、“好朋友”等就是一些模糊关系。模糊关系也可以用模糊集合表示。下面我们就用模糊子集定义模糊关系。定义

集合U1,U2,…,Un的笛卡尔积集U1×U2×…×Un的一个模糊子集,称为U1,U2,…,Un间的一个n元模糊关系。特别地,Un的一个模糊子集称为U上的一个n元模糊关系。模糊关系人工智能:不确定性推理612024/2/27普通集合一样,也可定义模糊集合的交、并、补运算。定义设A、B是X的模糊子集,A、B的交集A∩B、并集A∪B和补集A′,分别由下面的隶属函数确定:模糊集合的运算人工智能:不确定性推理622024/2/27语言变量模糊集合的一种应用是计算语言学,目的是对自然语言的语句进行计算,就象对逻辑语句进行运算一样。语言变量可以看作是用某种自然语言和人工语言的词语或句子来表示变量的值和描述变量间的内在联系的一种系统化的方法模糊集合和语言变量可用于量化自然语言的含义,因而可用来处理具有指定值的语言变量。Fuzzylogic=computingwithwords

人工智能:不确定性推理632024/2/27模糊逻辑是研究模糊命题的逻辑。设n元谓词表示一个模糊命题。定义这个模糊命题的真值为其中对象x1,x2,…,xn对模糊集合P的隶属度,即此式把模糊命题的真值定义为一个区间[0,1]中的一个实数。那么,当一个命题的真值为0时,它就是假命题;为1时,它就是真命题;为0和1之间的某个值时,它就是有某种程度的真(又有某种程度的假)的模糊命题。模糊逻辑人工智能:不确定性推理642024/2/27在上述真值定义的基础上,我们再定义三种逻辑运算:T(P∧Q)=min(T(P),T(Q))T(P∨Q)=max(T(P),T(Q))T(P)=1-T(P)其中P和Q都是模糊命题。这三种逻辑运算称为模糊逻辑运算。由这三种模糊逻辑运算所建立的逻辑系统就是所谓的模糊逻辑。可以看出,模糊逻辑是传统二值逻辑的一种推广。模糊逻辑人工智能:不确定性推理652024/2/27模糊推理是基于不确切性知识(模糊规则)的一种推理。

例如如果x小,那么

y大。x较小

y?就是模糊推理所要解决的问题。模糊推理是一种近似推理,一般采用Zadeh提出的语言变量、语言值、模糊集和模糊关系合成的方法进行推理。

模糊推理人工智能:不确定性推理662024/2/271965年,Zadeh提出模糊集合的概念,

1974年他又将模糊集引入推理领域开创了模糊推理技术以来,模糊推理就成为一种重要的近似推理方法。特别是20世纪90年代初,日本率先将模糊控制用于家用电器并取得成功,引起了全世界的巨大反响和关注。之后,欧美各国都竞相在这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论