内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第1页
内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第2页
内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第3页
内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第4页
内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古乌拉特前旗六中学2024届数学八年级第二学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.点、均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。若是轴上使得的值最大的点,是轴上使得的值最小的点,则()A.4 B.6.3 C.6.4 D.52.如图,在中,,点在上,,若,,则的长是()A. B. C. D.3.某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分 B.87分 C.87.5分 D.90分4.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7 B.5 C.3 D.25.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.6.如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为()A.2 B.4 C.6 D.87.关于函数y=-x-3的图象,有如下说法:①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=-x+4平行的直线.其中正确的说法有()A.5个 B.4个 C.3个 D.2个8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.69.若关于x的方程有两个相等的实数根,则常数c的值是A.6 B.9 C.24 D.3610.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(A.(14,-1) B.(14,0) C.(11.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN,若AB=,BC=,则图中阴影部分的面积为()A.4 B.2 C.2 D.212.将一次函数的图象向上平移2个单位,平移后,若,则x的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在▱ABCD中,E是BC边的中点,F是对角线AC的中点,若EF=5,则DC的长为_____.14.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.15.如图,在中,已知,,平分,交边于点E,则

___________

.16.现有两根木棒的长度分别是4米和3米,若要钉成一个直角三角形木架,则第三根木棒的长度为_________米.17.在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________18.分式方程有增根,则的值为__________。三、解答题(共78分)19.(8分)如图,在中,,,的垂直平分线分别交和于点、.求证:.20.(8分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.21.(8分)已知:如图,在等腰梯形中,,,为的中点,设,.(1)填空:________;________;________;(用,的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可)22.(10分)如图,E为正方形ABCD内一点,点F在CD边上,且∠BEF=90°,EF=2BE.点G为EF的中点,点H为DG的中点,连接EH并延长到点P,使得PH=EH,连接DP.(1)依题意补全图形;(2)求证:DP=BE;(3)连接EC,CP,猜想线段EC和CP的数量关系并证明.23.(10分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.24.(10分)一次函数的图象经过点.(1)求出这个一次函数的解析式;(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.25.(12分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?26.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

首先连接AB并延长,交x轴于点P,此时的值最大,可得出OP=4,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,首先求出直线A′B的解析式,得出,即可得出OQ,进而得解.【题目详解】连接AB并延长,交x轴于点P,此时的值最大;易求OP=4;如图,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,直线A′B:,∴∴∴故答案为C.【题目点拨】此题主要考查轴对称的最值问题,关键是作辅助线,找出等量关系.2、C【解题分析】

根据勾股定理求出斜边长,根据直角三角形的性质解答.【题目详解】在Rt△ABC中,∠ACB=90°,∴AB==5,∵∠ACB=90°,AD=BD,∴CD=AB=,故选C.【题目点拨】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、B【解题分析】

根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【题目详解】解:王老师的综合成绩为:90×40%+85×60%=87(分),

故选:B.【题目点拨】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4、B【解题分析】

首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【题目详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.【题目点拨】此题主要考查直角三角形的全等判定,熟练运用即可得解.5、A【解题分析】

首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【题目详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【题目点拨】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.6、D【解题分析】

根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.【题目详解】解:∵点,∴,则,由题意得,,整理得,,∵点在反比例函数上,∴,解得,,则,故选:D.【题目点拨】本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.7、B【解题分析】

根据一次函数的性质和图象上点的坐标特征解答.【题目详解】解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;

②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;

③因为k=-1<0,所以y随x增大而减小,错误;

④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;

⑤因为y=-x-3与y=-x+4的k值(斜率)相同,故两图象平行,正确.

故选:B.【题目点拨】本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8、A【解题分析】

作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.9、B【解题分析】

根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.【题目详解】∵方程x2+6x+c=0有两个相等的实数根,∴△=62-4×1×c=0,解得:c=9,故选B.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10、D【解题分析】

从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【题目详解】在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为n,n-1偶数列的坐标为n,n由加法推算可得到第100个点位于第14列自上而下第六行.代入上式得(14,142-5)故选D.【题目点拨】本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.11、B【解题分析】

根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.【题目详解】∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=,BC=∴阴影部分的面积=××=2.故选B.【题目点拨】本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.12、B【解题分析】

试题分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣4,当x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,考点:一次函数图象与几何变换.二、填空题(每题4分,共24分)13、1【解题分析】

根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB=1即可.【题目详解】解:∵E是BC边的中点,F是对角线AC的中点,∴EF是△ABC的中位线,∴AB=2EF=1,又∵四边形ABCD是平行四边形,∴AB=CD,∴CD=1.故答案为:1【题目点拨】本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.14、1【解题分析】

通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【题目详解】如图,根据题意,AD=AC=6,,,,,即,,,这个风车的外围周长是,故答案为1.【题目点拨】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.15、1【解题分析】

由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【题目详解】解:中,AD//BC,平分故答案为1.【题目点拨】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.16、.【解题分析】

题目中没有明确直角边和斜边,故要分情况讨论,再根据勾股定理求解即可.【题目详解】解:当第三根木棒为直角边时,长度当第三根木棒为斜边时,长度故第三根木棒的长度为米.故答案为:.【题目点拨】本题考查勾股定理的应用,分类讨论问题是初中数学的重点,在中考中比较常见,不重不漏的进行分类是解题的关键.17、或或【解题分析】

分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.【题目详解】解:I.当时,如图1所示.,,,为等边三角形,;II.当时,如图2所示.在中,,,,.在中,,,或.故答案为12或或.【题目点拨】本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.18、3【解题分析】

方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.【题目详解】解:∵分式方程有增根,

∴x-1=0,x+1=0,

∴x1=1,x1=-1.

两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,

整理得,m=x+1,

当x=1时,m=1+1=3,

当x=-1时,m=-1+1=0,

当m=0时,方程为=0,

此时1=0,

即方程无解,

∴m=3时,分式方程有增根,

故答案为:m=3.【题目点拨】本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.三、解答题(共78分)19、详见解析【解题分析】

连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性质可证得BE=2CE,则可证得结论.【题目详解】证明:连接,为边为垂直平分线,.,,,,在中,,,.【题目点拨】本题主要考查了含30°角的直角三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.20、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【解题分析】

(1)依据中位数和众数的定义进行计算即可;(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.【题目详解】(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).【题目点拨】本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.21、(1);;(或);(2)图见解析,.【解题分析】

(1)利用即可求出,首先根据已知可知,然后利用即可求出,利用即可求出;(2)首先根据已知可知,然后利用三角形法则即可求出.【题目详解】(1).∵,,∴,∴.;(2)作图如下:∵,为的中点,∴.∵,∴,∴.【题目点拨】本题主要考查向量的运算,掌握向量的运算法则是解题的关键.22、(1)详见解析;(2)详见解析;(3)详见解析【解题分析】

(1)根据题意可以画出完整的图形;

(2)由EF=2BE,点G为EF的中点可知,要证明DP=BE,只要证明DP=EG即可,要证明DP=EG,只要证明ΔPDH≌ΔEGH即可,然后根据题目中的条件和全等三角形的判定即可证明结论成立;

(3)首先写出线段EC和CP的数量关系,然后利用全等三角形的判定和性质即可证明结论成立.【题目详解】解:(1)依题意补全图形如下:(2)∵点H为线段DG的中点,∴DH=GH.在ΔPDH和ΔEGH中,∵EH=PH,∠EHG=∠PHD,∴ΔPDH≌ΔEGH(SAS).∴DP=EG.∵G为EF的中点,∴EF=2EG.∵EF=2EB,∴BE=EG=DP.(3)猜想:EC=CP.由(2)可知ΔPDH≌ΔEGH.∴∠HEG=∠HPD.∴DP∥EF.∴∠PDC=∠DFE.又∵∠BEF=∠BCD=90°,∴∠EBC+∠EFC=180°.又∵∠DFE+∠EFC=180°,∴∠EBC=∠DFE=∠PDC.∵BC=DC,DP=BE,∴ΔEBC≌ΔPDC(SAS).∴EC=PC.故答案为(1)详见解析;(2)详见解析;(3)详见解析.【题目点拨】本题考查全等三角形的判定与性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解题分析】

(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;

(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;

(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【题目详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,

∴∠OPB=90°或∠OBP=90°,如图1所示:

①当∠OPB=90°时,△OPB为等腰直角三角形,

∴OP=BP=2,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为2秒;

②当∠OBP=90°时,△OPB为等腰直角三角形,

∴OP=2BP=4,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为4秒.

综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.

(3)∵BP平分△OAB的面积,

∴S△OBP=S△ABP,

∴OP=AP,

∴点P的坐标为(3,0).

设直线BP的解析式为y=ax+b(a≠0),

将B(2,-2),点P(3,0)代入y=ax+b,得:,

解得:,

∴直线BP的解析式为y=2x-1.

当x=0时,y=2x-1=-1,

∴点D的坐标为(0,-1).

过点B作BE⊥y轴于点E,如图2所示.

∵点B的坐标为(2,-2),点D的坐标为(0,-1),

∴BE=2,CE=4,

∴BD==2,

∴当BP平分△OAB的面积时,线段BD的长为2.【题目点拨】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰直角三角形、三角形的面积以及勾股定理,解题的关键是:(1)联立直线AB及OB的解析式成方程组,通过解方程组求出点B的坐标;(2)分∠OPB=90°和∠OBP=90°两种情况,利用等腰直角三角形的性质求出点P的运动时间;(3)根据点的坐标,利用待定系数法求出直线BP的解析式.24、(1),(2).【解题分析】

(1)把点(-1,2)代入即可求解;(2)根据一次函数的平移性质即可求解.【题目详解】(1)把点(-1,2)代入即2=-k+4解得k=2,∴一次函数为(2)把向下平移一个单位得到的函数为【题目点拨】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.25、甲的加工更符合要求.图①中正方形的边长是,图②中的正方形边长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论