版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川电子科大实验中学2023-2024学年高三第五次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.32.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.3.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.4.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.5.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.6.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.7.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.8.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A. B. C. D.9.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.10.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.11.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.12.设为自然对数的底数,函数,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个顶点都在球O的球面上,,,,,E,F分别为,的中点,,则球O的体积为______.14.若,则________.15.在中,角,,的对边分别为,,,若,且,则面积的最大值为________.16.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.18.(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.19.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).20.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.(1)求线段的长.(2)若为线段上一点,且,求二面角的余弦值.21.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.22.(10分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.2、B【解析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.3、B【解析】
利用三角函数的性质,逐个判断即可求出.【详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【点睛】本题主要考查三角函数的性质应用.4、A【解析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.5、C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.6、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.7、C【解析】
先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.8、A【解析】
根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,∴,即:,,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.9、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.10、D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.11、B【解析】
求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.12、D【解析】
利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,,,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题.14、13【解析】
由导函数的应用得:设,,所以,,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【详解】解:设,,所以,,又,所以,即,取得:,又,所以,故,故答案为:13【点睛】本题考查了导函数的应用、二项式定理,属于中档题15、【解析】
利用正弦定理将角化边得到,再由余弦定理得到,根据同角三角函数的基本关系表示出,最后利用面积公式得到,由基本不等式求出的取值范围,即可得到面积的最值;【详解】解:∵在中,,∴,∴,∴,∴.∵,即,当且仅当时等号成立,∴,∴面积的最大值为.故答案为:【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式的应用,以及基本不等式的应用,属于中档题.16、.【解析】.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】
(1)由,解方程组即可得到答案;(2)(ⅰ)设,,则,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,,则,(ⅰ)易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.(ⅱ)记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.18、(1)或;(2).【解析】
(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.【详解】(1)原不等式等价于或或,解得:或,∴不等式的解集为或.(2)因为-2在R上恒成立,而,所以,解得,所以实数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.19、(1);(2)见解析.【解析】
(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以.又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.20、(1)的长为4(2)【解析】
(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,根据向量垂直关系计算得到答案.(2)计算平面的法向量为,为平面的一个法向量,再计算向量夹角得到答案.【详解】(1)分别以所在直线为轴,建立如图所示的空间直角坐标系.设,则,所以.,因为,所以,即,解得,所以的长为4.(2)因为,所以,又,故.设为平面的法向量,则即取,解得,所以为平面的一个法向量.显然,为平面的一个法向量,则,据图可知,二面角的余弦值为.【点睛】本题考查了立体几何中的线段长度,二面角,意在考查学生的计算能力和空间想象能力.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年苏科新版九年级历史下册阶段测试试卷含答案
- 2025年粤人版选修3历史下册月考试卷含答案
- 二零二五版苗木种植基地水资源利用合同样本4篇
- 2025年华东师大版九年级生物上册阶段测试试卷
- 二零二五版矿山设备购置合同模板3篇
- 二零二五年度模具行业新材料研发与应用合同3篇
- 二零二五年度民间担保业务风险管理合同3篇
- 2025年度拟上公司与会计事务所审计质量保证保密合同4篇
- 二零二五年度城市地下管线探测与修复承包合同3篇
- 二零二五年度厨具行业供应链金融服务合同7篇
- GB/T 3953-2024电工圆铜线
- 发电机停电故障应急预案
- 接电的施工方案
- 常用药物作用及副作用课件
- 幼儿阿拉伯数字描红(0-100)打印版
- 社会组织等级评估报告模板
- GB/T 12173-2008矿用一般型电气设备
- 2023年1月浙江高考英语听力试题及答案(含MP3+录音原文)
- 新媒体研究方法教学ppt课件(完整版)
- 2020新版个人征信报告模板
- 工艺管道仪表流程图(共68页).ppt
评论
0/150
提交评论