版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都龙泉第二中学2024年高三第六次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A. B. C. D.2.设a,b,c为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不修要条件3.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.4.中,,为的中点,,,则()A. B. C. D.25.已知复数,则的虚部是()A. B. C. D.16.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.8.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺10.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A. B. C. D.11.点为的三条中线的交点,且,,则的值为()A. B. C. D.12.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.二、填空题:本题共4小题,每小题5分,共20分。13.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.14.已知四棱锥,底面四边形为正方形,,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_________.15.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.18.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.19.(12分)已知函数,其中.(1)①求函数的单调区间;②若满足,且.求证:.(2)函数.若对任意,都有,求的最大值.20.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.21.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:22.(10分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.2、B【解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.3、D【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.4、D【解析】
在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.5、C【解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.6、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.7、A【解析】
化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。8、A【解析】
根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.9、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.10、A【解析】
根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,∴,即:,,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11、B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.12、D【解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.14、【解析】
由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值.【详解】设,,由球O内切于四棱锥可知,,,则,球O的半径,,,,当且仅当时,等号成立,此时.故答案为:.【点睛】本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的填空压轴题.15、【解析】
设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.16、【解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18、(1),;(2)2.【解析】
(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.【点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.19、(1)①单调递增区间,,单调递减区间;②详见解析;(2).【解析】
(1)①求导可得,再分别求解与的解集,结合定义域分析函数的单调区间即可.②根据(1)中的结论,求出的表达式,再分与两种情况,结合函数的单调性分析的范围即可.(2)求导分析的单调性,再结合单调性,设去绝对值化简可得,再构造函数,,根据函数的单调性与恒成立问题可知,再换元表达求解最大值即可.【详解】解:,由可得或,由可得,故函数的单调递增区间,,单调递减区间;,或,若,因为,故,,由知在上单调递增,,若由可得x1,因为,所以,由在上单调递增,综上.时,,在上单调递减,不妨设由(1)在上单调递减,由,可得,所以,令,,可得单调递减,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于难题.20、(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)【解析】
(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln•,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1•x2的最大值.【详解】(1)令m=2,函数h(x),∴h′(x),令h′(x)=0,解得x=e,∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函数f(x)恰有两个极值点x1,x2,∴f′(x)=lnx﹣mx=0有两个不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,两式相减可得lnx2﹣lnx1=m(x2﹣x1),两式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln•,设t,∵1e,∴1<t≤e,设g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]单调递增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]单调递增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]单调递增,∴g(t)max=g(e),∴ln(x1x2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年苏科新版九年级历史下册阶段测试试卷含答案
- 2025年粤人版选修3历史下册月考试卷含答案
- 二零二五版苗木种植基地水资源利用合同样本4篇
- 2025年华东师大版九年级生物上册阶段测试试卷
- 二零二五版矿山设备购置合同模板3篇
- 二零二五年度模具行业新材料研发与应用合同3篇
- 二零二五年度民间担保业务风险管理合同3篇
- 2025年度拟上公司与会计事务所审计质量保证保密合同4篇
- 二零二五年度城市地下管线探测与修复承包合同3篇
- 二零二五年度厨具行业供应链金融服务合同7篇
- GB/T 3953-2024电工圆铜线
- 发电机停电故障应急预案
- 接电的施工方案
- 常用药物作用及副作用课件
- 幼儿阿拉伯数字描红(0-100)打印版
- 社会组织等级评估报告模板
- GB/T 12173-2008矿用一般型电气设备
- 2023年1月浙江高考英语听力试题及答案(含MP3+录音原文)
- 新媒体研究方法教学ppt课件(完整版)
- 2020新版个人征信报告模板
- 工艺管道仪表流程图(共68页).ppt
评论
0/150
提交评论