版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省蓝田县数学八下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850 B.2620(1+x)=3850C.2620(1+2x)=3850 D.2620(1+x)2=38502.下列描述一次函数y=﹣2x+5图象性质错误的是()A.y随x的增大而减小B.直线与x轴交点坐标是(0,5)C.点(1,3)在此图象上D.直线经过第一、二、四象限3.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>24.下面计算正确的是()A. B. C. D.5.如图,将两块完全相同的矩形纸片ABCD和矩形纸片AEFG按图示方式放置(点A、D、E在同一直线上),连接AC、AF、CF,已知AD=3,DC=4,则CF的长是()A.5 B.7 C.52 D.106.正八边形的每一个内角的度数为:()A.45° B.60° C.120° D.135°7.如图,在Rt△ABC中,∠A=30°,BC=2,点D,E分别是直角边BC,AC的中点,则DE的长为()A.2 B.3 C.4 D.8.重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为xkm/h,则根据题意可列方程为()A.700x-C.700x-9.计算的结果为()A. B. C.3 D.510.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个11.如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是().A.x2 B.x2或1x0C.1x0 D.x2或x112.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.2种 B.4种 C.6种 D.无数种二、填空题(每题4分,共24分)13.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.14.如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.15.如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.16.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.17.正比例函数()的图象过点(-1,3),则=__________.18.已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.三、解答题(共78分)19.(8分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售总利润为元,要求购进空调数量不超过电冰箱数量的2倍,试确定获利最大的方案以及最大利润.20.(8分)如图①,直线与双曲线相交于点、,与x轴相交于C点.求点A、B的坐标及直线的解析式;求的面积;观察第一象限的图象,直接写出不等式的解集;如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.21.(8分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.(1)求证:①≌;②;(2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;(3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.22.(10分)解方程:﹣=123.(10分)解不等式组,并在数轴上把解集表示出来.24.(10分)已知:如图,在中,。(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);(2)求证:是等腰三角形。25.(12分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.26.计算:(1)|1-2|+.(2)
参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题解析:如果设该贫困户每年纯收入的平均增长率为x,那么根据题意得:列出方程为:故选D.2、B【解题分析】
由于k=-2<0,则y随x的增大而减小可知A正确;把x=0,x=1分别代入直线的解析式可判断B、C的正误;再由b>0,则直线经过第一、二、四象限,故D正确.【题目详解】A、因为k=﹣2<0,则y随x的增大而减小,所以A选项的说法正确;B、因为x=0,y=5,直线与y轴交点坐标是(0,5),所以B选项的说法错误;C、因为当x=1时,y=﹣2+5=3,所以点(1,3)在此图象上,所以C选项的说法正确;D、因为k<0,b>0,直线经过第一、二、四象限,所以D选项的说法正确.故选:B.【题目点拨】本题考查了一次函数的性质,熟知一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b)是解答此题的关键.3、B【解题分析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.【题目详解】由题意得,解得:x≥2,故选B.【题目点拨】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.4、B【解题分析】分析:A.根据合并二次根式的法则即可判定;B.根据二次根式的除法法则即可判定;C.根据二次根式的乘法法则即可判定;D.根据二次根式的性质即可判定.详解:A.不是同类二次根式,不能合并.故选项错误;B.÷==1.故选项正确;C..故选项错误;D.=2.故选项错误.故选B.点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二次根式才能合并;乘法法则;除法法则.5、C【解题分析】
由两块完全相同的矩形纸片ABCD和矩形纸片AEFG,得出AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,由勾股定理求出AC=5,由SAS证得△FGA≌△ABC,得出AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,由∠GFA+∠GAF=90°,推出∠GAF+BAC=90°,得出∠FAC=90°,即△CAF是等腰直角三角形,即可得出结果.【题目详解】∵两块完全相同的矩形纸片ABCD和矩形纸片AEFG,∴AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,AC=AB2在△FGA和△ABC中,FG=∴△FGA≌△ABC(SAS),∴AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,∵∠GFA+∠GAF=90°,∴∠GAF+BAC=90°,∴∠FAC=90°,∴△CAF是等腰直角三角形,∴CF=2AC=52,故选C.【题目点拨】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质,证明三角形全等与等腰直角三角形的判定是解题的关键.6、D【解题分析】
180°-360°÷8=135°,故选D.【题目点拨】错因分析较易题.失分原因:没有掌握正多边形的内角公式.7、A【解题分析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【题目详解】解:在Rt△ABC中,∠A=30°,∴AB=2BC=4,∵D,E分别是直角边BC,AC的中点,∴,故选:D.【题目点拨】本题考查的是三角形中位线定理、直角三角形的性质,三角形的中位线平行于第三边,且等于第三边的一半.8、A【解题分析】
设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.【题目详解】解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为700x平均速度提高了25km/h后所花时间为700x+25,根据题意提速后所花时间缩短3∴700x故选:A.【题目点拨】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.9、C【解题分析】针对二次根式化简,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.故选C.10、C【解题分析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.11、B【解题分析】
根据交点坐标及图象的高低即可判断取值范围.【题目详解】要使,则一次函数的图象要高于反比例函数的图象,∵两图象交于点A(2,1)、B(-1,-2),∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,∴使的x的取值范围是:或.故选:B.【题目点拨】本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.12、D【解题分析】
平行四边形的两条对角线交于一点,这个点是平行四边形的对称中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.【题目详解】∵平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,∴这样的折纸方法共有无数种.故选D.【题目点拨】本题主要考查平行四边形的性质,掌握平行四边形是中心对称图形,是解题的关键.二、填空题(每题4分,共24分)13、5【解题分析】
根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【题目详解】∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.14、60°【解题分析】
本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【题目详解】解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.故答案为60°.15、40°【解题分析】
由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【题目详解】解:绕点逆时针旋转到△的位置【题目点拨】本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.16、7【解题分析】试题分析:如图,过点A做BC边上高,所以EPAM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以,BM=CM,所以,因此CE=717、-1【解题分析】
将(-1,1)代入y=kx,求得k的值即可.【题目详解】∵正比例函数()的图象经过点(-1,1),∴1=-k,解得k=-1,故答案为:-1.【题目点拨】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.18、2【解题分析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.【题目详解】解:,不等式组整理得:,由数轴得:,可得,解得:,故答案为2【题目点拨】此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1)每台空调进价为1600元,电冰箱进价为2000元;(2)当购进电冰箱34台,空调66台获利最大,最大利润为13300元.【解题分析】
(1)设每台空调的进价为元,每台电冰箱的进价为元,根据题意可列出分式方程,故可求解;(2)先表示出y,再求出x的取值,根据一次函数的性质即可求解.【题目详解】解:(1)设每台空调的进价为元,每台电冰箱的进价为元.根据题意得,解得,,故每台空调进价为1600元,电冰箱进价为2000元.(2)设购进电冰箱台,则进购空调(100-x)台,∴,∵购进空调数量不超过电冰箱数量的2倍,∴100-x≤2x解得,∵为正整数,,,∴随的增大而减小,∴当时,的值最大,即最大利润,(元),故当购进电冰箱34台,空调66台获利最大,最大利润为13300元.【题目点拨】此题主要考查一次函数与分式方程的求解,解题的关键是根据题意得到方程或函数进行求解.20、(1);(2);(3);(4)【解题分析】
(1)先确定出点A,B坐标,再用待定系数法求出直线AB解析式;(2)先求出点C,D坐标,再用面积的差即可得出结论;(3)先确定出点P的位置,利用三角形的三边关系,最后用待定系数法求出解析式,即可得出结论.【题目详解】解:(1)∵点、在双曲线上,,,,,点A,B在直线上,,,直线AB的解析式为;(2)如图,由(1)知,直线AB的解析式为,,,,,;(3)由(1)知,,,由图象知,不等式的解集为;(4)存在,理由:如图2,作点关于x轴的对称点B′(4,-1),连接AB′交x轴于点P,连接BP,在x轴上取一点Q,连接AQ,BQ,点B与点B′关于x轴对称,点P,Q是BB′的中垂线上的点,∴PB′=PB,QB′=QB,在△AQB′中,AQ+B′Q>AB′的最小值为AB′,,B′(4,-1),直线AB′的解析式为,令,,,.【题目点拨】本题是反比例函数综合题,涉及了待定系数法,对称的性质,三角形的面积的计算方法,解本题的关键是求出直线AB的解析式和确定出点P的位置.21、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.【解题分析】
(1)①根据中点和平行即可找出条件证明全等.②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.(2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.【题目详解】(1)①∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.∵AD=CD,∴△ADF≌△CDE.②由△ADF≌△CDE,∴AF=CE.∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.(2)四边形AFCE是矩形.∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.【题目点拨】此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.22、x=1.【解题分析】
分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】原方程可变为:﹣=1,方程两边同乘(x﹣2),得1﹣(x﹣1)=x﹣2,解得:x=1,检验:当x=1时,x﹣2≠0,∴原方程的解为x=1.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23、x>1【解题分析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【题目详解】解:解不等式①,得x>1,解不等式②,得x≥-4,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为x>1,【题目点拨】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.24、(1)见解析;(2)是等腰三角形,见解析.【解题分析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《影视照明技术》2021-2022学年第一学期期末试卷
- 吉林艺术学院《书法实训I》2021-2022学年第一学期期末试卷
- 吉林艺术学院《剪辑基础》2021-2022学年第一学期期末试卷
- 2024年供热管网互联互通协议书模板
- 吉林师范大学《中国东北史》2021-2022学年第一学期期末试卷
- 2024年大型绿植售卖合同范本
- 2024年大厂员工合同范本
- 娱乐场营销合同协议书范文范本
- (浙教2024版)科学七年级上册3.2 太阳系的组成与结构 课件(共2课时)
- 吉林师范大学《外国古代教育史》2021-2022学年第一学期期末试卷
- 外研版英语六年级上册同步课课练精编(一起点)
- 中西文化鉴赏知到章节答案智慧树2023年郑州大学
- 答题卡(六年级数学)
- 小学语文2-6年级词语表
- 上海初中生综合素质评价典型事例范文通用6篇
- 捅马蜂窝优质获奖课件
- YDT 5132-2021 移动通信钢塔桅结构工程验收规范
- 电池片外观检验标准
- 中国近现代史纲要第1阶段练习题 参考答案 2023年春 江南大学
- 空防安全威胁应对措施与异常行为识别基础
- 批判性思维智慧树知到答案章节测试2023年
评论
0/150
提交评论