版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省东营市垦利区数学八年级第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个 B.3个 C.2个 D.1个2.直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x+c的解集为()A. B. C. D.3.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+ C.12或7+ D.以上都不对4.若x<y,则下列结论不一定成立的是()A. B. C. D.5.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形 B.菱形 C.矩形 D.正方形6.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形7.如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为()A.或 B.C. D.或8.某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小 B.平均数变大,方差变大C.平均数变大,方差不变 D.平均数变大,方差变小9.如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.﹣8 B.﹣16 C.﹣8 D.﹣1210.如图,在平行四边形中,,,的平分线交于点,则的长是()A.4 B.3 C.3.5 D.211.下列各组数据为边的三角形中,是直角三角形的是()A.8,15,16 B.5,12,15 C.1,2,6 D.2,3,712.菱形对角线不具有的性质是()A.对角线互相垂直 B.对角线所在直线是对称轴C.对角线相等 D.对角线互相平分二、填空题(每题4分,共24分)13.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.14.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.15.如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.16.计算的结果是______________。17.一次函数的图像与两坐标轴围成的三角形的面积是_________.18.如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.三、解答题(共78分)19.(8分)解不等式组:20.(8分)如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)(1)当t为何值时,四边形PCDQ是平行四边形?(2)当t为何值时,△QDP的面积为60cm2?(3)当t为何值时,PD=PQ?21.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.22.(10分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.求证:AE=FE.23.(10分)如图所示,中,,、分别为、的中点,延长到,使.求证:四边形是平行四边形.24.(10分)已知,是等边三角形,是直线上一点,以为顶点做.交过且平行于的直线于,求证:;当为的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取的中点,连结,然后证明.从而得到,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:(2)如图3、当D在BC的延长线上时,求证:(3)当在的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).25.(12分)一组数据从小到大顺序排列后为:1,4,6,x,其中位数和平均数相等,求x的值。26.数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:时间…4810162021222324…温度/℃……(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;(2)通过图表分析发现,冷柜中的温度是时间的函数.①当时,写出符合表中数据的函数解析式;②当时,写出符合表中数据的函数解析式;(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?
参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.详解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点睛:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.2、B【解题分析】
根据函数的图象得出两函数的交点坐标,再根据图象即可得出答案.【题目详解】∵根据图象可知:两函数的交点坐标为(1,-2),∴关于x的不等式k1x+b>k2x+c的解集是x>1,故选B.【题目点拨】本题考查了一次函数与一元一次不等式的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.3、C【解题分析】
设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C4、C【解题分析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【题目详解】解:A,不等式两边同时减3,不等式的方向不变,选项A正确;B,不等式两边同时乘-5,不等式的方向改变,选项B正确;C,x<y,没有说明x,y的正负,所以不一定成立,选项C错误;D,不等式两边同时乘,不等式的方向改变,选项D正确;故选:C.【题目点拨】本题主要考查了不等式的性质,即不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变;理解不等式的性质是解题的关键.5、B【解题分析】
此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【题目详解】由题意可得:四边形的四边形相等,故展开图一定是菱形.故选B.【题目点拨】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.6、A【解题分析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【题目详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【题目点拨】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.7、D【解题分析】
分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.【题目详解】解:观察图像得:的解集是:或.故选D.【题目点拨】本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.8、D【解题分析】
根据平均数、中位数的意义、方差的意义,可得答案.【题目详解】解:原数据的平均数为×(160+165+175+163+172)=166(cm),方差为×[(160-166)2+(165-166)2+(170-166)2+(163-166)2+(172-166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165-167)2+(170-167)2+(163-167)2+(172-167)2]=11.6(cm2),所以平均数变大,方差变小,故选D.【题目点拨】本题考查了方差,利用平均数、中位数和方差的定义是解题关键9、D【解题分析】
首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.【题目详解】解:过点C作CD⊥y轴,垂足为D,由折叠得:OB=BC=4,∠OAB=∠BAC=30°∴∠OBA=∠CBA=60°=∠CBD,在Rt△BCD中,∠BCD=30°,∴BD=BC=2,CD=,∴C(﹣,6)代入得:k=﹣×6=﹣故选:D.【题目点拨】本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.10、B【解题分析】
根据平行四边形的性质可得,再根据角平分线的性质可推出,根据等角对等边可得,即可求出的长.【题目详解】∵四边形ABCD是平行四边形∴∴∵是的平分线∴∴∴∴故答案为:B.【题目点拨】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.11、D【解题分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:A、82+152≠162,故不是直角三角形,故选项错误;
B、52+122≠152,故不是直角三角形,故选项错误;
C、12+22≠(6)2,故不是直角三角形,故选项错误;
D、22+(3)2=(7)2,故是直角三角形,故选项正确;故选:D.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12、C【解题分析】菱形的对角线互相垂直平分,菱形是轴对称图形,每一条对角线所在的直线就是菱形的一条对称轴,故选C.二、填空题(每题4分,共24分)13、30°或150°.【解题分析】
分等边△ADE在正方形的内部和外部两种情况分别求解即可得.【题目详解】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=×(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°,故答案为30°或150°.【题目点拨】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.14、【解题分析】
试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-115、1.【解题分析】
根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.【题目详解】由翻转变换的性质可知,BF=DF,则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,故答案为:1.【题目点拨】本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16、【解题分析】
根据二次根式的运算法则即可求出答案.【题目详解】解:原式故答案为:【题目点拨】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则17、1【解题分析】分析:首先求出直线y=2x-6与x轴、y轴的交点的坐标,然后根据三角形的面积公式得出结果.详解:∵当x=0时,y=0-6=-6,∴图像与y轴的交点是(0,-6);∵当y=0时,2x-6=0,∴x=3,∴图像与x轴的交点是(3,0);∴S△AOB=×3×6=1.故答案为:1.点睛:本题考查了一次函数图像与坐标轴的交点问题,分别令x=0和y=0求出图像与坐标轴的交点是解答本题的关键.18、y=2x﹣1.【解题分析】
将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.【题目详解】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
平行四边形OABC的对称中心D(4,1),
设直线MD的解析式为y=kx+b,
∴
即,
∴该直线的函数表达式为y=2x﹣1,
因此,本题正确答案是:y=2x﹣1.【题目点拨】本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.三、解答题(共78分)19、【解题分析】
先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是【题目点拨】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.20、(1)当t=7时,四边形PCDQ是平行四边形;(2)当t=时,△QDP的面积为60cm2;(3)当t=时,PD=PQ.【解题分析】
(1)根据题意用t表示出CP=t,AQ=2t,根据平行四边形的判定定理列出方程,解方程即可;(2)根据三角形的面积公式列方程,解方程得到答案;(3)根据等腰三角形的三线合一得到DH=DQ,列方程计算即可.【题目详解】(1)由题意得,CP=t,AQ=2t,∴QD=21﹣2t,∵AD∥BC,∴当DQ=PC时,四边形PCDQ是平行四边形,则21﹣2t=t,解得,t=7,∴当t=7时,四边形PCDQ是平行四边形;(2)在Rt△ABE中,BE==12,由题意得,×(21﹣2t)×12=60,解得,t=,∴当t=时,△QDP的面积为60cm2;(3)作PH⊥DQ于H,DG⊥BC于G,则四边形HPGD为矩形,∴PG=HD,由题意得,CG=AE=5,∴PG=t﹣5,当PD=PQ,PH⊥DQ时,DH=DQ,即t﹣5=(21﹣2t),解得,t=,则当t=时,PD=PQ.【题目点拨】本题考查的是平行四边形的性质和判定、等腰三角形的性质,掌握平行四边形的判定定理和性质定理是解题的关键.21、(1)见解析;(2)∠BDF=18°.【解题分析】
(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【题目详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【题目点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.22、见解析【解题分析】
由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠FCE,∵点E是CD的中点,∴DE=CE,∵∠AED=∠FEC,∴△ADE≌△FCE,∴AE=FE.【题目点拨】熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.23、证明见解析.【解题分析】
由题意易得,EF与BC平行且相等,即可证明四边形BCFE是平行四边形【题目详解】证明:∵D、E分别为AB、AC中点,∴DE=BC且DE//BC∵EF//BC∴2DE=BC=EF∴BC=EF∴四边形BCFE为平行四边形.【题目点拨】此题考查平行四边形的判定,解题关键在于判定定理24、(1)见解析;(2)见解析;(4)见解析,,仍成立【解题分析】
(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.【题目详解】(1)证明:在AB上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB∥CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB∥CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,,∴△AFD≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版音响设备产品销售与售后服务合同6篇
- 二零二五年度APP用户增长与数据共享合同3篇
- 2024年版:劳动合同主体变更协议书
- 2025版高空作业安全责任免除标准合同3篇
- 2025年度供应链管理合同模板3篇
- 2024年版房屋建筑工程安全施工合同版B版
- 2024年版企业法人与合作伙伴聘用协议模板版B版
- 2024年二零二四年度养鸡场饲养员饲养管理与防疫防控服务合同3篇
- 2024年版消防水池施工承包合同3篇
- 2025版K企业研发中心装修设计与施工合同3篇
- 重庆气体行业协会
- 公司走账合同范本
- 获奖一等奖QC课题PPT课件
- 企业中高层人员安全管理培训--责任、案例、管理重点
- 人教版小学三年级数学上册判断题(共3页)
- 国际项目管理手册The Project Manager’s Manual
- 小学五年级思政课教案三篇
- 高强螺栓施工记录
- 一亿以内的质数表(一)
- (完整版)倒插、翻口、评点文件
- 病理生理学缺氧
评论
0/150
提交评论