2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁金乡县联考八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点P的坐标为P-5,3,则点PA.一 B.二 C.三 D.四2.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上3.在“爱我莒州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲8、7、9、8、8;乙:7、9、6、9、9,则下列说法中错误的是()A.甲得分的众数是8 B.乙得分的众数是9C.甲得分的中位数是9 D.乙得分的中位数是94.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.1445.如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A.74cm B.64cm C.54cm D.44cm6.如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是()A. B. C. D.7.计算的结果为()A. B. C.3 D.58.如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②SABCD=AB•AC;③OB=AB:④OE=BC.其中成立的有()A.①②③ B.①②④ C.①③④ D.②③④9.若,则化简后为()A. B. C. D.10.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°11.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.12.下列图象能表示一次函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.矩形内一点到顶点,,的长分别是,,,则________________.14.如图,在中,,是线段的垂直平分线,若,则用含的代数式表示的周长为____.15.如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.16.如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3cm,则AD=________cm.17.已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.18.如果a2-ka+81是完全平方式,则k=________.三、解答题(共78分)19.(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=°,∠D=°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.20.(8分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?21.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.22.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.23.(10分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:151617171740(1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?24.(10分)如图,在平面直角坐标系中,直线与直线相交于点A.(I)求直线与x轴的交点坐标,并在坐标系中标出点A及画出直线的图象;(II)若点P是直线在第一象限内的一点,过点P作PQ//y轴交直线于点Q,△POQ的面积等于60,试求点P的横坐标.25.(12分)如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=2m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D.求BD的长度.(结果保留根号)26.如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【题目详解】解:∵点P的坐标为P∴点P在第二象限故选:B【题目点拨】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解题分析】

写出各个定理的逆命题,判断是否正确即可.【题目详解】解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;故选:C.【题目点拨】本题考查的是命题与定理,属于基础知识点,比较简单.3、C【解题分析】

众数是在一组数据中出现次数最多的数;将一组数据按从小到大顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数称为中位数;【题目详解】∵甲8、7、9、8、8;∴甲的众数为8,中位数为8∵乙:7、9、6、9、9∴已的众数为9,中位数为9故选C.【题目点拨】本题考查的是众数,中位数,熟练掌握众数,中位数是解题的关键.4、C【解题分析】

根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.【题目详解】解:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,点E、F为线段BD的两个三等分点,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72;故选:C.【题目点拨】本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.5、B【解题分析】

首先过A作AM垂直PC于点M,过点B作BN垂直DQ于点N,再利用三角函数计算AM和BN,从而计算出MN.【题目详解】解:根据题意过A作AM垂直PC于点M,过点B作BN垂直DQ于点N所以故选B.【题目点拨】本题主要考查直角三角形的应用,关键在于计算AM的长度,这是考试的热点问题,应当熟练掌握.6、A【解题分析】

连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.【题目详解】解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),∵四边形ABCO是平行四边形,∴AC与BO互相平分,∴点E(),∵点O坐标(0,0),∴点B[(a+m),(+)].∵点B在反比例函数y=(x<0)的图象上,∴,∴a=-2m,a=m(不合题意舍去),∴点A(-2m,),∴四边形ACFG是矩形,∴S△AOC=(+)(m+2m)--1=,∴▱OABC的面积=2×S△AOC=3.故选:A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.7、C【解题分析】针对二次根式化简,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.故选C.8、B【解题分析】

由▱ABCD中,∠ADC=60°,易得△ABE是等边三角形,又由AB=BC,,证得①∠CAD=30°;继而证得AC⊥AB,得②S▱ABCD=AB•AC;可得OE是三角形的中位线,证得④OE=BC.【题目详解】解:∵四边形ABCD是平行四边形,

∴∠ABC=∠ADC=60°,∠BAD=120°,

∵AE平分∠BAD,

∴∠BAE=∠EAD=60°

∴△ABE是等边三角形,

∴AE=AB=BE,

∵AB=BC,,∴∠BAC=90°,

∴∠CAD=30°,故①正确;

∵AC⊥AB,

∴S▱ABCD=AB•AC,故②正确,,∵BD>BC,

∴AB≠OB,故③错误;

∵∠CAD=30°,∠AEB=60°,AD∥BC,

∴∠EAC=∠ACE=30°,

∴AE=CE,

∴BE=CE,

∵OA=OC,,故④正确.

故选B.【题目点拨】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△ABE是等边三角形,OE是△ABC的中位线是关键.9、A【解题分析】

二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【题目详解】有意义,则y>0,∵xy<0,∴x<0,∴原式=.故选A【题目点拨】此题考查二次根式的性质与化简,解题关键在于掌握其定义10、B【解题分析】

根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【题目详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【题目点拨】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.11、C【解题分析】

求出两个不等式的解集,再根据有解列出不等式组求解即可:【题目详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.12、D【解题分析】

将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【题目详解】y=k(x-1)=kx-k,

当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;

当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;

故选:D.【题目点拨】考查了一次函数的性质,解题的关键是能够分类讨论.二、填空题(每题4分,共24分)13、【解题分析】

如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.【题目详解】解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25∴2(a2+c2)+b2+d2=9+16+25∴b2+d2=18∴PD=,故答案为.【题目点拨】本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.14、2a+3b【解题分析】

由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AD=BD=BC=b,从而可求△ABC的周长.【题目详解】解:∵AB=AC,CD=a,AD=b,∴AC=AB=a+b,∵DE是线段AB的垂直平分线,∴AD=BD=b,∴∠DBA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠DBC=∠ABC−∠DBA=36°,∴∠BDC=180°−∠ACB−∠CBD=72°,∴BD=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b.故答案为:2a+3b.【题目点拨】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AD=BD=BC,本题属于中等题型.15、2【解题分析】

先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【题目详解】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2【题目点拨】此题考查一次函数问题,关键是根据代入法解解析式进行分析.16、6+【解题分析】

由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.【题目详解】解:作AB的垂直平分线,交AC于点E,∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,∴tan30°==,解得:CD=cm,∵BC=3cm,∴BE=6cm,∴CE=3cm,∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.17、50【解题分析】

根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【题目详解】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB==50故答案为:50.【题目点拨】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.18、±18.【解题分析】

利用完全平方公式的结构特征判断即可确定出k的值.【题目详解】∵二次三项式a2-ka+81是完全平方式,∴k=±18,故答案为:±18.【题目点拨】此题考查完全平方式,解题关键在于掌握运算法则三、解答题(共78分)19、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.【解题分析】试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;

(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;

(3)根据等对角四边形的定义画出图形即可求解;

(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;

②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.试题解析:(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,∴∠D=∠B=1°,∴∠C=360°﹣1°﹣1°﹣70°=140°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2,∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC=.综上所述:AC的长为或.故答案为:140,1.【题目点拨】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.20、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.【解题分析】分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;详解:(1),(2)解得:,解得:.∵3000>2500,∴公路运输方式运送的牛奶多,∴(元),(元).∵1050>900,∴铁路运输方式所需费用较少.点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.21、(1)证明见解析;(2)24【解题分析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考点:1.菱形的性质;2..矩形的判定.22、(1)见解析;(2)见解析.【解题分析】

(1)由“AAS”可证△AFE≌△DBE,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质的AD=DC,即可证明四边形ADCF是菱形。【题目详解】(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,∠AFE=∴△AFE≌△DBE(AAS))∴AF=BD(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=12BC=∴四边形ADCF是菱形【题目点拨】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质。证明AD=DC是解题的关键。23、(1),17,17;(2)众数.【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论