版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省郑州市金水区金水区为民中学八年级数学第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B. C.2 D.2.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90° B.AC=BD C.∠OBC=∠OCB D.AO⊥BD3.一次函数与,在同一平面直角坐标系中的图象是()A. B. C. D.4.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等5.如图,添加下列条件仍然不能使▱ABCD成为菱形的是()A.AB=BC B.AC⊥BD C.∠ABC=90° D.∠1=∠26.直线y=kx+b与y=mx在同一平面直角坐标系中的图象如图所示,则关于x的不等式kx+b>mx的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣1 D.x<﹣17.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设(
)A.a不垂直于c B.a垂直于b C.a、b都不垂直于c D.a与b相交8.如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB=4,则OE的长是()A.2 B.C.1 D.9.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.710.正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.50,EF⊥AB,垂足为F,则EF的长()A.1 B. C. D.11.二次根式有意义的条件是A. B. C. D.12.已知反比例函数(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6) B.(-1,-12) C.(,24) D.(-3,8)二、填空题(每题4分,共24分)13.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.14.命题“如果x=y,那么”的逆命题是____________________________________________.15.将直线向下平移4个单位,所得到的直线的解析式为___.16.下列函数的图象(1),(2),(3),(4)不经过第一象限,且随的增大而减小的是__________.(填序号)17.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.18.在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.三、解答题(共78分)19.(8分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.20.(8分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.21.(8分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点在上,点在的延长线上,求证:=ME,⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM=;若点E在直线BC上,则DM=.22.(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,BH和AF有何数量关系,并说明理由;(2)将正方形EFGH绕点E顺时针方向旋转,如图2,判断BH和AF的数量关系,并说明理由.23.(10分)化简求值:,其中m=﹣1.24.(10分)如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.(1)求证:四边形DECF是平行四边形.(2)当AC、BC满足何条件时,四边形DECF为菱形?25.(12分)如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.26.求下列分式的值:,并从x=0,﹣1,﹣2中选一个适当的值,计算分式的值.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.2、D【解题分析】
依据矩形的定义和性质解答即可.【题目详解】∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【题目点拨】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.3、C【解题分析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【题目详解】当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选C.【题目点拨】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.4、C【解题分析】试题分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选C.5、C【解题分析】
根据菱形的性质逐个进行证明,再进行判断即可.【题目详解】A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项错误;B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形和∠ABC=90°不能推出,平行四边形ABCD是菱形,故本选项正确;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,故本选项错误;故选C.【题目点拨】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.6、D【解题分析】
根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的上面,即可得出不等式kx+b>mx的解集.【题目详解】解:由函数图象可知,关于x的不等式kx+b>mx的解集是x<−1.故选:D.【题目点拨】本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的“高低”(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.7、D【解题分析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.【题目详解】解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,应假设:a不平行b或a与b相交.故选择:D.【题目点拨】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8、A【解题分析】
根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.【题目详解】解:在▱ABCD中,AC与BD相交于点O,
∴BO=DO,
∵点E是边BC的中点,
所以OE是△ABC的中位线,
∴OE=AB=1.
故选A.【题目点拨】本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.9、A【解题分析】
由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【题目详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【题目点拨】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10、B【解题分析】
根据题意连接AC,与BD的交点为O.再根据,,可得AE是的角平分线,所以可得OE=EF,BE=,所以OB=,因此可计算出EF的长.【题目详解】解:根据题意连接AC,与BD的交点为O.四边形ABCD为正方形AE是的角平分线故选B.【题目点拨】本题主要考查正方形的性质,关键在于根据题意列出方程,这是考试的常考点,应当熟练掌握.11、A【解题分析】
根据:二次根式被开方数必须是非负数才有意义.【题目详解】由m-2≥0得,.故选A【题目点拨】本题考核知识点:二次根式有意义条件.解题关键点:熟记二次根式有意义条件.12、D【解题分析】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可【题目详解】反比例函数(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、×24=12经过,D、-3×8=-24不经过,故选D【题目点拨】熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大二、填空题(每题4分,共24分)13、1.【解题分析】
分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,根据勾股定理列方程求解即可.【题目详解】如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,∵DE平分∠ODA,EO⊥DO,EH⊥DH,∴OE=HE,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,AO2+BO2=AB2,∴(x+x)2+(x+x)2=(2+)2,解得x=1(负值已舍去),∴线段OE的长为1.故答案为:1.【题目点拨】此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;14、逆命题“如果,那么x=y”.【解题分析】命题“如果x=y,那么x2=y2”的题设是“x=y”,结论是“x2=y2”,则逆命题的题设和结论分别为“x2=y2”和“x=y”,即逆命题为“如果x2=y2,那么x=y”.故答案为如果x2=y2,那么x=y.点睛:本题考查逆命题的概念:如果两个命题的题设和结论正好相反,那么这两个命题互为逆命题,如果把其中一个叫原命题,那么另一个叫它的逆命题.15、【解题分析】
直接根据“上加下减”的平移规律求解即可.【题目详解】将直线向下平移4个单位长度,所得直线的解析式为,即.故答案为:.【题目点拨】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.16、(1)【解题分析】
根据一次函数的增减性与各项系数的关系逐一判断即可.【题目详解】解:(1)中,因为-1<0,所以随的增大而减小,且经过二、四象限,故符合题意;(2)中,因为1>0,所以随的增大而增大,故不符合题意;(3),因为-2<0,所以随的增大而减小,但经过一、二、四象限,故不符合题意;(4)中,因为1>0,所以随的增大而增大,故不符合题意.故答案为:(1).【题目点拨】此题考查的是一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.17、39cm60cm1【解题分析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【题目详解】∵BE、CE分别平分∠ABC、∠BCD,∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,∵AD∥BC,AB∥CD,∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF⊥BC于F,根据直角三角形的面积公式得:EF=cm,∴平行四边形ABCD的面积=BC·EF==60cm1,故答案为39cm,60cm1.【题目点拨】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.18、105°或45°【解题分析】
根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E在BD右侧时,点E在BD左侧时,分别求出答案即可.【题目详解】∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠C=∠ABC=∠ADC=150°,∴∠ABD=∠DBC=75°,∵EB=ED,∠DEB=120°,∴∠EBD=∠EDB=30°,当点E在DB左侧时,∠EBC=∠EBD+∠CBD=105°,当点在DB右侧时,∠BC=∠CBD-∠BD=45°,故答案为:105°或45°.【题目点拨】此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.三、解答题(共78分)19、A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).【解题分析】
(1)已知游乐园的坐标为(2,-2),将该点向左平移两个单位、再向上平移两个单位,即可得到原点(0,0)的位置;接下来,以(0,0)为坐标原点,以水平向右的方向为x轴正半轴,以竖直向上的方向为y轴正方向建立平面直角坐标系即可;(2)根据(1)中的坐标系和其他各景点的位置即可确定它们的坐标.【题目详解】(1)由题意可得,建立的平面直角坐标系如图所示.(2)由平面直角坐标系可知,音乐台A的坐标为(0,4),湖心亭B的坐标为(-3,2),望春亭C的坐标为(-2,-1),游乐园D的坐标为(2,-2),牡丹园E的坐标为(3,3).【题目点拨】本题考查坐标确定位置.20、(1)x1=,x2=;(2)x1=2,x2=−.【解题分析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.【题目详解】(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.【题目点拨】本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.21、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【解题分析】
(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;
(2)结论不变,证明方法类似;
(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【题目详解】解:(1)△AMN≌△FME,等腰直角.如图1中,延长EM交AD于H.
∵四边形ABCD是正方形,四边形EFGC是正方形,
∴,,
∴,
∴,
∵,,
∴△AMH≌△FME,
∴,,
∴,
∵,
∴DM⊥EM,DM=ME.(2)结论仍成立.如图,延长EM交DA的延长线于点H,∵四边形ABCD与四边形CEFG都是正方形,∴,,∴AD∥EF,∴.∵,,∴△AMF≌△FME(ASA),…∴,,∴.在△DHE中,,,,∴,DM⊥EM.(3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:∵四边形ABCD与四边形CEFG都是正方形,且点E在BC上∴AB//EF,∴,∵M为AF中点,∴AM=MF∵在三角形AHM与三角形EFM中:,∴△AMH≌△FME(ASA),∴,,∴.∵在三角形AHD与三角形DCE中:,∴△AHD≌△DCE(SAS),∴,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE中,,,,∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中,所以【题目点拨】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.22、(1)BH=AF,见解析;(2)BH=AF,见解析.【解题分析】
(1)根据正方形的性质可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;(2)根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形的性质即可得到结论.【题目详解】(1)BH=AF,理由如下:在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;(2)BH=AF,理由如下:∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF.【题目点拨】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,准确找到全等三角形是解题的关键.23、m﹣3,-2.【解题分析】
直接将括号里面进行加减运算,再利用分式的混合运算法则计算得出答案.【题目详解】==m﹣3,把m=﹣1代入得,原式=﹣1﹣3=﹣2.【题目点拨】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.24、(1)详见解析;(2)详见解析;【解题分析】
(1)先由中位线定理得到DE∥CF,DF∥EC,再利用一组对边平行且相等的四边形是平行四边形进行平行四边形的判定.(2)由(1)可知四边形DECF是平行四边形,利用平行四边形的性质得出AC=BC,DE=DF,即可解答【题目详解】(1)证明:D、E、F分别为边AB、BC、CA的中点.所以,DE∥CF,DF∥EC,所以,四边形DECF是平行四边形.(2)当AC=BC时,四边形DECF为菱形,因为DE=AC,DF=BC,由AC=BC,得DE=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产前检查流程
- 强拆后补偿协议书范文范本
- 物流管理专业毕业论文选题参考
- 新生儿肺炎教学查房
- 2023-2024学年西藏日喀则市南木林中学八校联考高考模拟数学试卷
- 荣德基课件语文
- 青年座谈会闭幕词(3篇)
- 酒水采购合同
- 离婚起诉状纸(32篇)
- 学生会宣传部工作总结(26篇)
- 人教版2024新版七年级上册数学期中模拟测试卷(含答案解析)
- 2023年中级经济师《工商管理》真题及答案解析(11月12日下午)
- 2024中国石化校园招聘超1万人高频考题难、易错点模拟试题(共500题)附带答案详解
- GB/T 18029.8-2024轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 中华民族共同体概论课件专家版9第九讲 混一南北和中华民族大统合(元朝时期)
- 中职学考《哲学与人生》考试复习题库(含答案)
- 电梯日管控、周排查、月调度内容表格
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- HCCDP 云迁移认证理论题库
- 《战争与和平法》读书笔记思维导图
- (完整版)护士延续注册体检表
评论
0/150
提交评论