版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市江北区2024届数学八年级第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<12.某同学一周中每天完成家庭作业所花时间(单位:分钟)分别为:35,40,45,40,55,40,1.这组数据的众数是()A.35 B.40 C.45 D.553.已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是()A.5 B.-8 C.2 D.44.寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是()A. B. C. D.5.如图,在矩形ABCD中,AB=1,BC=.将矩形ABCD绕点A逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD上,连接DD′,则DD′的长度为()A. B. C.+1 D.26.如图在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=2,AB=8,则△ABDA.16 B.32 C.8 D.47.下列选项中的计算,正确的是(
)A.9=±3 B.23-3=2 C.-52=-5 D.8.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是()A.1250km B.125km C.12.5km D.1.25km9.两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等10.如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为()A. B. C. D.11.不等式的解在数轴上表示正确的是()A. B.C. D.12.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限二、填空题(每题4分,共24分)13.如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=22.则四边形ABFE′的面积是_____.14.在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____15.如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为_____.16.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)17.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.18.若,则=____三、解答题(共78分)19.(8分)如图,四边形ABCD和四边形AEFB都是平行四边形,求证:△ADE≌△BCF.20.(8分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.21.(8分)列方程或方程组解应用题:从A地到B地有两条行车路线:路线一:全程30千米,但路况不太好;路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的1.8倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米?22.(10分)已知:如图,,,求的面积.23.(10分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.24.(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.25.(12分)先化简,再求值:.其中a=3+.26.如图,是的角平分线,过点作交于点,交于点.(1)求证:四边形为菱形;(2)如果,,求的度数.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【题目详解】解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b<0的解集是x<﹣1.故选:B.【题目点拨】考查了函数的有关知识,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.2、B【解题分析】试题分析:∵这组数据40出现的次数最多,出现了3次,∴这组数据的众数是40;故选B.考点:众数.3、D【解题分析】
根据判别式的意义得到k2≥24,然后对各选项进行判断.【题目详解】解:根据题意得△=(-k)2-4×6≥0,即k2≥24,故选:D.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4、D【解题分析】
根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.【题目详解】解:由题意可得,
刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
故选:D.【题目点拨】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.5、A【解题分析】
先求出∠ABD=60°,利用旋转的性质即可得到AB=AB′,进而得到△ABB′是等边三角形,于是得到∠BAB′=60°,再次利用旋转的性质得到∠DAD′=60°,结合AD=AD′,可得到△ADD′是等边三角形,最后得到DD′的长度.【题目详解】解:∵矩形ABCD中,AB=1,BC=,∴AD=BC=,∴tan∠ABD==,∴∠ABD=60°,∵AB=AB′,∴△ABB′是等边三角形,∴∠BAB′=60°,∴∠DAD′=60°,∵AD=AD′,∴△ADD′是等边三角形,∴DD′=AD=BC=,故选A.6、C【解题分析】
作DH⊥AB于H.利用角平分线的性质定理证明DH=DC=2即可解决问题.【题目详解】解:作DH⊥AB于H.由作图可知:PA平分∠CAB,∵DC⊥AC,DH⊥AB,∴DH=DC=2,∴S△ABD=12•AB•DH=12×8×2=故选:C.【题目点拨】本题考查作图﹣基本作图,角平分线的性质定理等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考常考题型.7、D【解题分析】
根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.【题目详解】解:A、9=3B、23C、(-5)2D、34故答案为:D【题目点拨】本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.8、D【解题分析】试题分析:比例尺的定义:比例尺=图上距离∶实际距离.由题意得甲、乙两地的实际距离,故选D.考点:比例尺的定义点评:本题属于基础应用题,只需学生熟练掌握比例尺的定义,即可完成.9、D【解题分析】
根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.【题目详解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均数相等,两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故选D.【题目点拨】本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.10、A【解题分析】
先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.【题目详解】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90∘,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.即BC×OE=BO×AB=k=6.∴,故选:A.【题目点拨】本题主要考查相似三角形判定定理,熟悉掌握定理是关键.11、C【解题分析】
先求出不等式的解集,再在数轴上表示出来即可.【题目详解】解:解不等式1+x>3得,x>2,
在数轴上表示为:故选:C【题目点拨】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.12、D【解题分析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【题目详解】解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.【题目点拨】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.二、填空题(每题4分,共24分)13、12+42.【解题分析】
连接EB、EE′,作EM⊥AB于M,EE′交AD于N.易知△AEB≌△AED≌△ADE′,先求出正方形AMEN的边长,再求出AB,根据S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB即可解决问题.【题目详解】连接EB、EE′,作EM⊥AB于M,EE′交AD于N,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,在△ADE和△ABE中,AD=∴△ADE≌△ABE(SAS),∵把△ADE沿AD翻折,得到△ADE′,∴△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=22,∴AM=EM=EN=AN=2,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=2,AO=2+22,∴AB=2AO=4+22,∴S△AEB=S△AED=S△ADE′=12×2×(4+22)=4+22,S△BDE=S△ADB﹣2S△AEB=12×(4+22)2﹣2×12×2×(4+22∵DF=EF,∴S△EFB=12S△BDE=12×4=∴S△DEE′=2S△AED﹣S△AEE′=2×(4+22)﹣12×(22)2=4+42,S△DFE′=12S△DEE′=12×(4+42)=∴S四边形AEFE′=2S△AED﹣S△DFE′=2×(4+22)﹣(2+22)=6+22,∴S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB=6+22+4+22+2=12+42;故答案为:12+42.【题目点拨】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.14、(2,1)【解题分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【题目详解】点P(2,﹣1)关于x轴的对称点的坐标是(2,1),故答案为:2,1.【题目点拨】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.15、1.【解题分析】
首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BCD的面积.【题目详解】∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△AOE+S△BOF+S△COD=S△BCD;∵S△BCD=BC•CD=1,∴S阴影=1.故答案为1.【题目点拨】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.16、【解题分析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【题目详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【题目点拨】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、1【解题分析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.【题目详解】解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.【题目点拨】本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.18、【解题分析】
先将变形成|3-a|+(b-2)2=0,根据非负数的性质得到3-a=0,b-2=0,求出a、b的值,然后代入所求代数式即可求出结果.【题目详解】因为,所以|3-a|+(b-2)2=0,所以3-a=0,b-2=0,所以a=3,b=2,所以=.【题目点拨】考查了非负数的性质,首先根据非负数的性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.三、解答题(共78分)19、见解析.【解题分析】
由四边形ABCD和四边形AEFB,证明四边形DEFC为平行四边形,根据平行四边形的性质可以得到△ADE和△BCF的三边相等,从而证明它们全等.【题目详解】解:证明:∵四边形ABCD为平行四边形,∴,∵四边形AEFB是平行四边形,∴,∴,∴四边形DEFC为平行四边形,∴DE=FC,在△ADE和△BCF中∵∴△ADE≌△BCF(SSS)【题目点拨】本题考查全等三角形的判定,平行四边形的判定和性质.在解决本题中易证明三角形的两组对应边AD=BC,AE=BF,所以解题关键是证明四边形DEFC为平行四边形,并因此证明DE=FC.20、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.【解题分析】
(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.【题目详解】(1).(2)由题意得:,解得.又因为,所以.由(1)可知,,所以的值随着的增加而减小.所以当时,取最大值,此时生产乙种产品(吨).答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.【题目点拨】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.21、走路线二的平均车速是2km/h.【解题分析】试题分析:方程的应用解题关键是找出等量关系,列出方程求解,本题等量关系为:走路线二所用的时间比走路线一所用的时间少20分钟.设走路线一的平均车速是每小时x千米,则走路线二平均车速是每小时1.8x千米.由题意,得30x解方程,得x=1.经检验,x=1是原方程的解,且符合题意.所以1.8x=2.答:走路线二的平均车速是每小时2千米.考点:分式方程的应用(行程问题).22、14【解题分析】试题分析:构造矩形,用矩形的面积减去3个直角三角形的面积即可求得.试题解析:如图,构造矩形,,,,,.23、(1)a=20%.本次抽查中学生每天参加活动时间的中位数是1;(2)本次抽查中学生每天参加户外活动的平均时间是1.175小时.【解题分析】
(1)用1减去其它组的百分比即可求得a的值,然后求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版英语八年级上册Unit 7 训练案
- 2024年度城市供水供热系统能源管理合作协议
- 2024年建筑结构设计合同
- 2(2024版)面向艺术品的商品买卖合同
- 2024年度某企业碳排放权交易合同
- 2024年建筑施工环境保护与安全协议
- 2024年度广告制作分包合同
- 2024年快餐外卖配送服务合同
- 2024年度信息技术服务合同的担保方式与标的详解
- 2024年度环境监测系统建设与运维合同
- 墓碑碑文范文(通用十四篇)
- 大象版一年级科学上册全册教案
- 5000字论文范文(推荐十篇)
- 教案评分标准
- 中药饮片处方点评表
- 《节能监察的概念及其作用》
- 综合布线系统竣工验收表
- 蔬菜会员卡策划营销推广方案多篇
- 导管滑脱应急预案及处理流程
- (精选word)三对三篮球比赛记录表
- 大型火力发电厂专业词汇中英文翻译大全
评论
0/150
提交评论