山东省莱芜市名校2024届八年级数学第二学期期末预测试题含解析_第1页
山东省莱芜市名校2024届八年级数学第二学期期末预测试题含解析_第2页
山东省莱芜市名校2024届八年级数学第二学期期末预测试题含解析_第3页
山东省莱芜市名校2024届八年级数学第二学期期末预测试题含解析_第4页
山东省莱芜市名校2024届八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莱芜市名校2024届八年级数学第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,2.已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()A. B.C. D.3.如果点在的图像上,那么在此图像上的点还有()A.(-3,2) B.(2,-3) C.(-2,-3) D.(0,0)4.函数与在同一平面直角坐标系中的大致图像是(

)A. B. C. D.5.式子在实数范围内有意义,则的取值范围是()A. B. C. D.6.如图,在菱形中,,点、分别为、上的动点,,点从点向点运动的过程中,的长度()A.逐渐增加 B.逐渐减小C.保持不变且与的长度相等 D.保持不变且与的长度相等7.当x分别取-2019、-2018、-2017、…、-2、-1、0、1、、、…、、、时,分别计算分式的值,再将所得结果相加,其和等于()A.-1 B.1 C.0 D.20198.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限9.一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家200米B.李师傅路上耗时20分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅修车用了5分钟10.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.11.位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()A.平均数 B.众数 C.方差 D.中位数12.若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1二、填空题(每题4分,共24分)13.如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.14.当x≤2时,化简:=________15.若一组数据,,,,的众数是,则这组数据的方差是__________.16.一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.17.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________18.如图,在矩形中,,相交于点,平分交于点,若,则________.三、解答题(共78分)19.(8分)如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.20.(8分)暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为______件。(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元。(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由。21.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.(1)求的值;(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.22.(10分)计算:+23.(10分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.24.(10分)如图,在中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:;(2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?25.(12分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;(2)在如图所示的直角坐标系中画出(1)中函数的图象;(3)六一期间如何选择这两家商场购物更省钱?26.某校师生去外地参加夏令营活动,车票价格为每人100元,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校参加这项活动的教师有5名,学生有x名.(1)设购票付款为y元,请写出y与x的关系式.(2)请根据夏令营的学生人数,选择购票付款的最佳方案?

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【题目详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.2、B【解题分析】

一次函数的图象与性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.【题目详解】∵一次函数y=kx﹣k,y随x增大而增大,∴k>0,﹣k<0,∴此函数的图象经过一、三、四象限.故选B.【题目点拨】本题主要考查了一次函数的图象与性质,熟练掌握一次函数的图像与系数的关系式解答本题的关键.3、C【解题分析】

将代入即可求出k的值,再根据k=xy解答即可.【题目详解】解:∵点在反比例函数的图象上,∴k=3×2=1,而只有C选项代入得:k=−2×(-3)=1.故选:C.【题目点拨】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.4、A【解题分析】

先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【题目详解】A、由双曲线在一、三象限,得m<1.由直线经过一、二、四象限得m<1.正确;

B、由双曲线在二、四象限,得m>1.由直线经过一、四、三象限得m>1.错误;

C、由双曲线在一、三象限,得m<1.由直线经过一、四、三象限得m>1.错误;

D、由双曲线在二、四象限,得m>1.由直线经过二、三、四象限得m<1.错误.

故选:A.【题目点拨】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.5、D【解题分析】

根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【题目详解】解:式子在实数范围内有意义,即:,解得:,故选:D;【题目点拨】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.6、D【解题分析】【分析】如图,连接BD,由菱形的性质以及∠A=60°,可得△BCD是等边三角形,从而可得BD=BC,再通过证明△BCF≌BDE,从而可得CF=DE,继而可得到AE+CF=AB,由此即可作出判断.【题目详解】如图,连接BD,∵四边形ABCD是菱形,∠A=60°,∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,∴∠4=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,∴∠1=∠3,在△BCF和△BDE中,,∴△BCF≌BDE,∴CF=DE,∵AE+DE=AB,∴AE+CF=AB,故选D.【题目点拨】本题考查了菱形的性质,全等三角形的判定与性质,熟练掌握相关的定理与性质是解题的关键.7、A【解题分析】

设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【题目详解】∵将x=a代入得:,将x=-代入得:,∴,当x=0时,=-1,故当x取-2019,-2018,-2017,……,-2,-1,0,1,,,……,,,时,得出分式的值,再将所得结果相加,其和等于:-1.故选A.【题目点拨】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.8、C【解题分析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C9、A【解题分析】

观察图象,明确每一段小明行驶的路程,时间,作出判断.【题目详解】A.李师傅上班处距他家2000米,此选项错误;B.李师傅路上耗时20分钟,此选项正确;C.修车后李师傅骑车速度是2000-100020-15=200米/分钟,修车前速度为100010=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,D.李师傅修车用了5分钟,此选项正确.故选A.【题目点拨】本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10、D【解题分析】

根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【题目详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【题目点拨】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.11、D【解题分析】

参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【题目详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【题目点拨】此题考查统计量的选择,解题关键在于掌握中位数的意义.12、D【解题分析】试题分析:∵点(3,1)在一次函数y=kx-2(k≠0)的图象上,∴3k-2=1,解得k=1.故选D.考点:一次函数图象上点的坐标特征.二、填空题(每题4分,共24分)13、1或3【解题分析】

用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,据此求解即可.【题目详解】解:设运动时间为t,则AE=tcm,BF=2tcm,∵是等边三角形,cm,∴BC=3cm,∴CF=,∵AG∥BC,∴AE∥CF,∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,∴=t,∴2t-3=t或3-2t=t,∴t=3或t=1,故答案是:1或3.【题目点拨】本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.14、2-x【解题分析】

,∵x≤2,∴原式=2-x.15、13.1【解题分析】

首先根据众数的定义求出的值,进而利用方差公式得出答案.【题目详解】解:数据0,,8,1,的众数是,,,,故答案为:13.1.【题目点拨】此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.16、1【解题分析】

根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.【题目详解】如图,由题意知,AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=AB2-A故BD=2BO=1,故答案为:1.【题目点拨】本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.17、.【解题分析】

过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.【题目详解】如图,过B作BP⊥AD于P,BQ⊥AC于Q,由旋转可得,∠CAB=∠D,BD=BA=3,∴∠D=∠BAD,∴∠BAD=∠BAC,即AB平分∠DAC,∴BP=BQ,又∵Rt△ABC中,AB=3,BC=4,∴AC=5,BQ=,∴BP=,∴Rt△ABP中,AP=,∴AD=,∴S△ABD=AD×BP=,由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,∴△ABD∽△CBE,∴,即,解得S△CBE=,故答案为.【题目点拨】此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.18、【解题分析】

判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO是等边三角形,根据等边三角形的性质求出OB=AB,再求出OB=BE,然后根据等腰三角形两底角相等求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE计算即可得解.【题目详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB-∠CAE=45°-15°=30°,∴∠BAO=90°-30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC-∠ABO=90°-60°=30°,∴∠BOE=(180°-30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故答案为135°.【题目点拨】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.三、解答题(共78分)19、(1),(2)见解析.【解题分析】

(1)依据∠ADC=90°,利用勾股定理可得AD=;(2)依据勾股定理的逆定理,可得BC2+AC2=AB2,即可得到△ABC是直角三角形.【题目详解】解:(1)∵CD⊥AB,∴∠ADC=90°,∴AD==;(2)证明:由上题知AD=,同理可得BD=,∴AB=AD+BD=5,∵32+42=52,∴BC2+AC2=AB2,∴△ABC是直角三角形.【题目点拨】本题考查了勾股定理,勾股定理逆定理,根据图形判断出所求的边所在的直角三角形是解题的关键.20、(1)1.(2)当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由见解析.【解题分析】

(1)根据当天销售量=283﹣13×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于y的一元二次方程,由该方程根的判别式△=﹣36<3,可得出该方程无解,进而可得出该纪念品的当天销售利润不能达到3733元.【题目详解】解:(1)283﹣(45﹣43)×13=1(件).故答案为:1.(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,依题意,得:(x﹣33)[283﹣(x﹣43)×13]=2613,整理,得:x2﹣98x+11=3,整理,得:x1=39(不合题意,舍去),x2=2.答:当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由如下:设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,依题意,得:(y﹣33)[283﹣(y﹣43)×13]=3733,整理,得:y2﹣98y+2413=3.∵△=(﹣98)2﹣4×1×2413=﹣36<3,∴该方程无解,即该纪念品的当天销售利润不能达到3733元.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、(1).(2)①判断:.理由见解析;②或.【解题分析】

(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【题目详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【题目点拨】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.22、3+1.【解题分析】

先利用平方根的性质,然后化简后合并即可.【题目详解】解:原式=3+1=3+1.【题目点拨】此题考查二次根式的混合运算,解题关键在于掌握把二次根式化为最简二次根式.23、(1)见详解;(2);.【解题分析】

(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.【题目详解】解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD−AH=2−,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=2,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:.【题目点拨】本题是四边形综合题,主要考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、圆周角定理、勾股定理、三角函数等知识,综合性强,难度大,知识面广.24、(1)证明见解析(2)四边形ABCD是菱形(3)【解题分析】

(1)依据条件证即可;(2)依据四条边都相等的四边形是菱形判定即可;(3)割补后,图形的面积不变,故正方形的面积就等于菱形的面积,求出菱形面积即可得正方形的边长.【题目详解】(1)证明:在和中,,,;(2)解:四边形ABCD是菱形,理由如下:,,,,四边形ABCD是菱形;(3)解:,,,四边形ABCD的面积,拼成的正方形的边长.【题目点拨】本题主要考查了三角形的全等的证明、菱形的判定、正方形的性质,正确理解作图步骤获取有用条件是解题的关键.25、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论