2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题含解析_第1页
2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题含解析_第2页
2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题含解析_第3页
2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题含解析_第4页
2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省亳州市涡阳县石弓中心学校数学八下期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某校计划修建一条500米长的跑道,开工后每天比原计划多修15米,结果提前2天完成任务.如果设原计划每天修x米,那么根据题意可列出方程()A.=2 B.=2C.=2 D.=22.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.123.对于函数y=-2x+5,下列说法正确的是()A.图象一定经过(2,-1) B.图象经过一、二、四象限C.图象与直线y=2x+3平行 D.y随x的增大而增大4.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5 B.7 C.15 D.175.若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A.不变 B.是原来的3倍 C.是原来的6倍 D.是原来的9倍6.小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买支笔,则列出的不等式为()A. B.C. D.7.如图,,两地被池塘隔开,小明想测出、间的距离;先在外选一点,然后找出,的中点,,并测量的长为,由此他得到了、间的距离为()A. B. C. D.8.若在实数范围内有意义,则的取值范围是()A. B. C. D.且9.下列各式:中,是分式的有()A.1个 B.2个 C.3个 D.4个10.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,50二、填空题(每小题3分,共24分)11.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.12.如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n=________13.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).14.“同位角相等”的逆命题是__________________________.15.把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.16.当x________时,分式有意义.17.点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).18.二次根式有意义的条件是______________.三、解答题(共66分)19.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.20.(6分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。21.(6分)如图:,点在一条直线上,.求证:四边形是平行四边形.22.(8分)已知x=2+,求代数式(7-4)x2+(2-)x+的值.23.(8分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.24.(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.25.(10分)某类儿童服装以每件40元的价格购进800件,售价为每件80元,五月售出200件.六月,批发商决定采取“降价促销”的方式喜迎“六一”,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;七月,批发商将对剩余的童装一次性清仓销售,清仓时单价为40元,设六月单价降低x元(1)填表时间五月六月七月清仓单价(元/件)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么六月的单价应是多少元?26.(10分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

设原计划每天修x米,则实际每天修(x+15)米,根据时间=工作总量÷工作效率结合提前1天完成任务,即可得出关于x的分式方程,此题得解.【题目详解】设原计划每天修x米,则实际每天修(x+15)米.由题意,知原计划用的时间为天,实际用的时间为:天,故所列方程为:=1.故选:A.【题目点拨】本题考查了由实际问题抽象出分式方程,根据等量关系结合分式方程,找出未知数代表的意义是解题的关键.2、B【解题分析】

由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【题目详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【题目点拨】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.3、B【解题分析】

利用一次函数的性质逐个分析判断即可得到结论.【题目详解】A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;C、∵y=-2x+5与y=2x+3的k的值不相等,∴图象与直线y=2x+3不平行,所以C不正确;D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;故选:B.【题目点拨】本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.4、D【解题分析】试题分析:先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.解:∵x1,x2,x3的平均数是5,∴x1+x2+x3=15,∴===1.故选D.考点:算术平均数.5、B【解题分析】试题分析:根据分式的基本性质即可求出答案.解:原式=;故选B.点睛:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.6、A【解题分析】

设买x支笔,然后根据最多有26元钱列出不等式即可.【题目详解】设可买x支笔则有:2x+3×5≤26,故选A.【题目点拨】本题考查的是列一元一次不等式,解此类题目时要注意找出题目中不等关系即为解答本题的关键.7、B【解题分析】

根据三角形中位线定理解答.【题目详解】∵点M,N分别是AC,BC的中点,∴AB=2MN=38(m),故选B.【题目点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.8、D【解题分析】

根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.【题目详解】根据二次根式有意义,分式有意义得:x+1≥1且x≠1,解得:x≥-1且x≠1.故选D.【题目点拨】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.9、D【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:是分式,共4个故选:D.【题目点拨】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.10、A【解题分析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.二、填空题(每小题3分,共24分)11、1【解题分析】

由方程有实数根,可得出b1﹣4ac≥0,代入数据即可得出关于m的一元一次不等式,解不等式即可得m的取值范围,再找出其内的最大偶数即可.【题目详解】解:当m﹣1=0时,原方程为1x+1=0,解得:x=﹣,∴m=1符合题意;当m﹣1≠0时,△=b1﹣4ac=11﹣4(m﹣1)≥0,即11﹣4m≥0,解得:m≤3且m≠1.综上所述:m≤3,∴偶数m的最大值为1.故答案为:1.【题目点拨】本题考查了根的判别式以及解一元一次方程,分方程为一元一次或一元二次方程两种情况找出m的取值范围是解题的关键.12、1.【解题分析】

根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.【题目详解】∵菱形ABCD的顶点C(-1,0),点B(0,2),∴点A的坐标为(-1,4),点D坐标为(-2,2),∵D(n,2),∴n=-2,当y=4时,-x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,∴m+n=1,故答案为:1.【题目点拨】本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.13、(30﹣10)【解题分析】

AB的黄金分割点有两个,一种情况是AC<BC,一种是AC>BC,当AC<BC时走的路程最小,由此根据黄金分割的意义进行求解即可.【题目详解】如图所示:则,即(20−AC):20=(−1):2,解得AC=30−10.∴他应至少再走30−10米才最理想,故答案为:30−10.【题目点拨】本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.14、如果两个角相等,那么这两个角是同位角.【解题分析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.15、y=﹣x+1【解题分析】

根据“上加下减”的平移规律可直接求得答案.【题目详解】解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.故答案为:y=﹣x+1.【题目点拨】本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.16、【解题分析】

根据分母不等于0列式求解即可.【题目详解】由题意得,x−1≠0,解得x≠1.故答案为:≠1.【题目点拨】本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.17、y1>y2【解题分析】∵在中,,∴在函数中,y随x的增大而减小.又∵,∴,即空格处应填“>”.18、x≥1【解题分析】

根据被开方数大于等于0列式计算即可得解.【题目详解】由题意得,x−1⩾0,解得x⩾1.故答案为:x⩾1.【题目点拨】此题考查二次根式有意义的条件,解题关键在于掌握被开方数大于等于0三、解答题(共66分)19、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.【解题分析】

(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【题目详解】试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【题目点拨】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.20、(1)见解析;(2)【解题分析】

(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可【题目详解】证明:(1)在矩形ABCD中CD∥AB,CD=AB,∵EF∥AB,EF=AB∴CD//EF,CD=EF∴四边形CDEF是平行四边形,又∵DE=DC∴四边形CDEF是菱形(2)在矩形ABCD中,∠BAD=90°,AD=BC=3∴当四边形ABFE周长最小时,AE⊥BD此时;BD=,∠AED=90°由(1)可知四边形CDEF是平行四边形四边形CDEF的周长为故:当四边形ABFE周长最小时,四边形CDEF的周长为【题目点拨】本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.21、详见解析【解题分析】

根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.【题目详解】,∴AC+CF=EF+CF,又,,,,,,∴四边形是平行四边形.【题目点拨】本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.22、2+【解题分析】

把已知数据代入原式,根据平方差公式计算即可.【题目详解】解:当时,

原式===49-48+4-3+=2+.23、详见解析【解题分析】

根据角平分线的画法和性质解答即可.【题目详解】证明:由题意可得:BD是∠ABC的角平分线,∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,∴∠ABC=60°,∠A=30°,∴∠CBD=∠DBA=30°,∴BD=2CD,∵∠DBA=∠A=30°,∴AD=BD,∴AD=2CD.【题目点拨】本题考查了基本作图,关键是根据角平分线的画法和性质证明.24、证明见解析【解题分析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论