2024届河北省张家口市数学八下期末学业质量监测试题含解析_第1页
2024届河北省张家口市数学八下期末学业质量监测试题含解析_第2页
2024届河北省张家口市数学八下期末学业质量监测试题含解析_第3页
2024届河北省张家口市数学八下期末学业质量监测试题含解析_第4页
2024届河北省张家口市数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省张家口市数学八下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,四边形的对角线和相交于点,下列判断正确的是()A.若,则是平行四边形B.若,则是平行四边形C.若,,则是平行四边形D.若,,则是平行四边形2.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)

5

6

7

8

人数(人)

3

15

22

10

表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个3.下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3 B.6,8,10 C.5,12,13 D.15,20,254.下列四个图形中,既是轴对称又是中心对称的图形是(

)A.4个 B.3个 C.2个 D.1个5.如图,中,是斜边上的高,,那么等于()A. B. C. D.6.如图,的对角线相交于点,且,过点作交于点,若的周长为20,则的周长为()A.7 B.8 C.9 D.107.发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,1.其中能作为直角三角形的三边长的有A.1组 B.2组 C.3组 D.4组8.如图所示,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中平行四边形AEMG的面积与平行四边形HCFM的面积的大小关系是()A. B.C. D.9.如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是()A.6cm B.12cm C.18cm D.48cm10.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm二、填空题(每小题3分,共24分)11.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).12.分解因式:=______.13.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.14.矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)15.若二次根式有意义,则实数x的取值范围是__________.16.已知一次函数与的图象交于点P,则点P的坐标为______.17.如图,△OAB的顶点A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,AB中点P恰好落在y轴上,则△OAB的面积为_____.18.把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线与轴、轴分别交于两点,抛物线经过两点,与轴交于另一点.(1)求抛物线解析式及点坐标;(2)连接,求的面积;(3)若点为抛物线上一动点,连接,当点运动到某一位置时,面积为的面积的倍,求此时点的坐标.20.(6分)如图①,将直角梯形放在平面直角坐标系中,已知,点在上,且,连结.(1)求证:;(2)如图②,过点作轴于,点在直线上运动,连结和.①当的周长最短时,求点的坐标;②如果点在轴上方,且满足,求的长.21.(6分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择统计图训练后篮球定时定点投篮测试进球统计表进球数(个)876543人数214782请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.22.(8分)把下列各式因式分解:(1)(x2﹣9)+3x(x﹣3)(2)3ax2+6axy+3ay223.(8分)深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?24.(8分)某产品成本为400元/件,由经验得知销售量与售价是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润最大?最大利润是多少?25.(10分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)26.(10分)已知,正比例函数的图象与一次函数的图象交于点.(1)求,的值;(2)求一次函数的图象与,围成的三角形的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.【题目详解】∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定ABCD是平行四边形.故选D.【题目点拨】此题考查平行四边形的判定,解题关键在于掌握判定定理.2、C【解题分析】

解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【题目点拨】本题考查众数.3、A【解题分析】

只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【题目详解】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选A.【题目点拨】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.4、C【解题分析】

根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【题目详解】①是轴对称图形,也是中心对称图形,符合题意;

②是轴对称图形,不是中心对称图形,不符合题意;

③是轴对称图形,是中心对称图形,符合题意;

④轴对称图形,不是中心对称图形,不符合题意.

综上可得①③符合题意.

故选:C.【题目点拨】考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5、C【解题分析】

根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.【题目详解】解:∵∠ACB=90°,

∴∠ACD+∠DCB=90°,

∵CD是高,

∴∠ADC=∠CDB=90°,

∴∠ACD+∠CAD=90°,

∴∠DCB=∠CAD,

∴△ADC∽△CDB,∴CD2=AD•BD,

∵AD=9,BD=4,∴CD=6故选:C.【题目点拨】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.6、D【解题分析】

由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,由行四边形ABCD的周长为20可得BC+CD=10,然后可求△CDE的周长.【题目详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵平行四边形ABCD的周长为20,∴BC+CD=10,∴△CDE的周长为CD+DE+EC=CD+BC=10.故选D.【题目点拨】此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.7、C【解题分析】①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=12,∴能组成直角三角形.故选C.8、A【解题分析】

根据平行四边形的性质和判定得出平行四边形GBEP、GPFD,证△ABD≌△CDB,得出△ABD和△CDB的面积相等;同理得出△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,相减即可求出答案.【题目详解】∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;∵,∴△ABD≌△CDB(SSS),即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即.故选:A.【题目点拨】此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于得出△ABD≌△CDB9、B【解题分析】

利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.【题目详解】∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AB)=×24=12cm,故选B.【题目点拨】本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF的周长是△ABC的周长的一半是关键.10、A【解题分析】

根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【题目详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.【题目点拨】主要考查了勾股定理解直角三角形.二、填空题(每小题3分,共24分)11、3080π.【解题分析】

用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【题目详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【题目点拨】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.12、x(x+2)(x﹣2).【解题分析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.13、.【解题分析】

由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴Bn的横坐标为,故答案为:.14、正方【解题分析】

此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.【题目详解】∵AF,BE是矩形的内角平分线.

∴∠ABF=∠BAF-90°.

故∠1=∠2=90°.

同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.

又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,

∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.

∴OD=OC,△AMD≌△BNC,

∴NC=DM,

∴NC-OC=DM-OD,

即OM=ON,

∴矩形GMON为正方形,

故答案为正方.【题目点拨】本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.15、【解题分析】

根据二次根式有意义的条件可得x-4≥0,再解即可.【题目详解】由题意得:x−4⩾0,解得:x⩾4,故答案为:x⩾4【题目点拨】此题考查二次根式有意义的条件,解题关键在于二次根式有意义的条件得到x-4≥016、(3,0)【解题分析】

解方程组,可得交点坐标.【题目详解】解方程组,得,所以,P(3,0)故答案为(3,0)【题目点拨】本题考核知识点:求函数图象的交点.解题关键点:解方程组求交点坐标.17、5.【解题分析】

分别作BC⊥y轴于点C,AD⊥y轴于点D,由P为AB的中点,得到S△ADP=S△BCP,在由A,B都在反比例函数上得到面积,转换即可【题目详解】如图分别作BC⊥y轴于点C,AD⊥y轴于点D,∵P为AB的中点,∴S△ADP=S△BCP,则S△ABO=S△BOC+S△OAC,∵A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,∴S△BOC=2,S△OAD=3,则S△ABO=5,故答案为5【题目点拨】熟练掌握反比例函数上的点与坐标轴和原点围成的三角形面积为|k|和面积转换是解决本题的关键18、【解题分析】

根据上加下减,左加右减的法则可得出答案.【题目详解】解:沿y轴向上平移5个单位得到直线:,即.故答案是:.【题目点拨】本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.三、解答题(共66分)19、(1),;(2);(3)点的坐标为,,,见解析.【解题分析】

(1)利用两点是一次函数上的点求出两点,再代入二次函数求解即可.(2)根据,求出,求出△ABC.(3)根据面积为的面积的倍,求出,得出求出此时M的坐标即可.【题目详解】(1)解:∵直线∴令,则,解得∴令,则,∴将点,代入中得,,解得∴抛物线的解析式为:;令,则,解得∴.(2)解:∵,∴∴(3)∵面积为的面积的倍,∴∵AB=4,∴,∵∴抛物线的顶点坐标为符合条件,当时,,解的,x1=,x2=,∴点的坐标为(3,-4),,.【题目点拨】本题考查的是二次函数,熟练掌握二次函数是解题的关键.20、(1)见解析;(2)①;②或8【解题分析】

(1)先由已知条件及勾股定理求出AE=1,AB=,得到,又∠OAB=∠BAE,根据两边对应成比例且夹角相等的两三角形相似证明△OAB∽△BAE,得出∠AOB=∠ABE,再由两直线平行,内错角相等得出∠OBC=∠AOB,从而证明∠OBC=∠ABE;(2)①由于CE为定长,所以当PC+PE最短时,△PCE的周长最短,而E与A关于BD对称,故连接AC,交BD于P,即当点C、P、A三点共线时,△PCE的周长最短.由PD∥OC,得出,求出PD的值,从而得到点P的坐标;②由于点P在x轴上方,BD=1,所以分两种情况:0<PD≤1与PD>1.设PD=t,先用含t的代数式分别表示S△CEP与S△ABP,再根据S△CEP:S△ABP=2:1,即可求出DP的长.【题目详解】解:(1)由题意可得:∵OC=1,BC=3,∠OCB=90°,∴OB=2.∵OA=2,OE=1,∴AE=1,AB=,∵,∴.∵,∴,.∵,∴,∴.(2)①∵BD⊥x轴,ED=AD=2,∴E与A关于BD对称,当点共线时,的周长最短.∵,∴,即∴∴.②设,当时,如图:∵梯,;又∵.∴,∴;当时,如图:∵,,∴..∴所求DP的长为或8.【题目点拨】本题是相似形的综合题,涉及到勾股定理,平行线的性质,轴对称的性质,三角形的面积,相似三角形的判定与性质,有一定难度.(2)中第二小问进行分类讨论是解题的关键.21、(1)10%,40;(2)5;(3)参加训练前的人均进球数为4个.【解题分析】

(1)根据选择长跑训练的人数等于1减去其他人数占的比例,根据训练篮球的人数=2+1+4+7+8+2=24人,求出全班人数;(2)根据平均数的概念求进球平均数;(3)设参加训练前的人均进球数为x个,得到方程:(1+25%)x=5,解出即可.【题目详解】解:(1)(1)选择长跑训练的人数占全班人数的百分比=1-60%-10%-20%=10%;训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=24÷60%=40;(2)(3)解:设参加训练前的人均进球数为个,由题意得:解得:.答:参加训练前的人均进球数为4个.【题目点拨】此题考查加权平均数,一元一次方程的应用,扇形统计图,解题关键在于看懂图中数据.22、(1)(x﹣3)(4x+3);(1)3a(x+y)1.【解题分析】

(1)原式利用平方差公式变形,再提取公因式即可;

(1)原式提取公因式,再利用完全平方公式分解即可.【题目详解】(1)原式=(x+3)(x﹣3)+3x(x﹣3)=(x﹣3)(4x+3);(1)原式=3a(x1+1xy+y1)=3a(x+y)1.【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1)甲工程队单独完成需要12天;(2)A种清洁剂最少应购买1瓶【解题分析】

(1)可设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,根据工作总量的等量关系,列出方程即可求解;(2)可设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,根据购买总费用不多于780元,列出不等式即可求解.【题目详解】解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,依题意有,解得x=12,经检验,x=12是原方程的解.故甲工程队单独完成此工程需要12天;(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,依题意有6a+9(100-a)≤780,解得a≥1.故A种清洁剂最少应购买1瓶.【题目点拨】考查了分式方程的应用,一元一次不等式的应用,分析题意,找到关键描述语,找到合适的等量关系和不等关系是解决问题的关键.24、售价为850元/件时,有最大利润405000元【解题分析】

设销售量与售价的一次函数为,然后再列出利润的二次函数,求最值即可完成解答.【题目详解】设一次函数为,把、代入得.解方程组得,,∴,∴∴时,,∴售价为850元/件时,有最大利润405000元.【题目点拨】本题考查一次函数和二次函数综合应用,其中确定一次函数解析式是解答本题的关键.25、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论