北京市各区2024届八年级数学第二学期期末预测试题含解析_第1页
北京市各区2024届八年级数学第二学期期末预测试题含解析_第2页
北京市各区2024届八年级数学第二学期期末预测试题含解析_第3页
北京市各区2024届八年级数学第二学期期末预测试题含解析_第4页
北京市各区2024届八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市各区2024届八年级数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小张去时所用的时间多于回家所用的时间 B.小张在公园锻炼了20分钟C.小张去时的速度大于回家的速度 D.小张去时走上坡路,回家时走下坡路2.顺次连接四边形各边中点所得的四边形是()A.平行四边形 B.矩形 C.菱形 D.以上都不对3.如图,四边形ABCD是长方形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()A.1 B.2 C.3 D.44.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)5.如图,在中,,,,将绕点逆时针旋转得到△,连接,则的长为A. B. C.4 D.66.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+17.下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3 B.6,8,10 C.5,12,13 D.15,20,258.如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于(

)A.110° B.115° C.120° D.125°9.如图,点A是直线l外一点,在l上取两点B、C,分别以点A、C为圆心,以BC、AB的长为半径画弧,两弧交于点D,分别连接AD、CD,得到的四边形ABCD是平行四边形.根据上述作法,能判定四边形ABCD是平行四边形的条件是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对角分别相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形10.如图,在同一平面直角坐标系中,函数与函数的图象大致是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.12.若,化简的正确结果是________________.13.如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.14.菱形的周长为8,它的一个内角为60°,则菱形的较长的对角线长为__________.15.如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.16.在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.17.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.18.如图,在平行四边形ABCD中,AB=10,BC=6,AC⊥BC,则平行四边形ABCD的面积为___________.三、解答题(共66分)19.(10分)已知(如图),点分别在边上,且四边形是菱形(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);(2)如果,点在边上,且满足,求四边形的面积;(3)当时,求的值。20.(6分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的,假设从去年开始,连续三年(去年,今年,明年)该电子产品的价格下降率都相同.(1)求这种电子产品的价格在这三年中的平均下降率.(2)若两年前这种电子产品的价格是元,请预测明年该电子产品的价格.21.(6分)如图,为长方形的对角线,将边沿折叠,使点落在上的点处.将边沿折叠,使点落在上的点处。求证:四边形是平行四边形;若,求四边形的面积。22.(8分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.23.(8分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.24.(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.25.(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.26.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据图象可以得到小张去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据C的速度可以判断去时是否走上坡路,回家时是否走下坡路.【题目详解】解:A、小张去时所用的时间为6分钟,回家所用的时间为10分钟,故选项错误;B、小张在公园锻炼了20-6=14分钟,故选项错误;C、小张去时的速度为1÷=10千米每小时,回家的速度的为1÷=6千米每小时,故选项正确;D、据(1)小张去时走下坡路,回家时走上坡路,故选项错误.故选C.【题目点拨】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.2、A【解题分析】试题分析:如图四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,根据三角形中位线定理可得:EF平行且等于AC的一半,MN平行且等于AC的一半,根据平行四边形的判定,可知四边形为平行四边形.故选A.考点:三角形中位线定理.3、A【解题分析】

由矩形和正方形的性质得出AD∥EF∥BC,AB=CD=4,∠B=90°,证出四边形EFCH平行四边形,∠BHE=∠BCF=30°,得出EH=CF=6,由含30°角的直角三角形的性质求出BE=3,得出AE的长,即可得出正方形的面积.【题目详解】∵四边形ABCD是矩形,四边形AEFG是正方形,

∴AD∥EF∥BC,AB=CD=4,∠B=90°,

又∵EH∥FC,

∴四边形EFCH平行四边形,∠BHE=∠BCF=30°,

∴EH=CF=6,

∴BE=EH=3,

∴AE=AB-BE=4-3=1,

∴正方形AEFG的面积=AE2=1;

故选:A.【题目点拨】本题考查了正方形的性质、矩形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质;熟记性质并求出四边形EFCH平行四边形是解题的关键.4、A【解题分析】∵点A(2,4)在函数y=kx-2的图象上,

∴2k-2=4,解得k=3,

∴此函数的解析式为:y=3x-2,

A选项:∵3×0-2=-2,∴此点在函数图象上,故本选项正确;

B选项:∵3×()-2=1.5≠0,∴此点在不函数图象上,故本选项错误;

C选项:∵3×(8)-2=22≠20,∴此点在不函数图象上,故本选项错误;

D选项:∵3×-2=-0.5≠,∴此点在不函数图象上,故本选项错误.

故选A.5、B【解题分析】

根据条件求出∠BAC=90°,从而利用勾股定理解答即可.【题目详解】将绕点逆时针旋转得到△,,,,,,,在中,.故选:.【题目点拨】本题考查旋转和勾股定理,解题关键是掌握旋转的性质和勾股定理公式.6、B【解题分析】

试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.7、A【解题分析】

只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【题目详解】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选A.【题目点拨】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.8、A【解题分析】

由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.【题目详解】解:∵四边形ABCD是矩形,∴AC=BD,OA=OB,∴∠BAO=∠ABO=55°,∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故答案为:A【题目点拨】本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.9、D【解题分析】

根据题意可知,即可判断.【题目详解】由题意可知:,根据两组对边分别相等可以判定这个四边形为平行四边形.故选:D【题目点拨】本题考查了平行四边形的判定,熟知两组对边分别相等的四边形是平行四边形是解题关键.10、A【解题分析】

分情况讨论:和时,根据图像的性质,即可判定.【题目详解】当时,函数的图像位于第一、三象限,函数的图像第一、三、四象限;当时,函数的图像位于第二、四象限,函数的图像第二、三、四象限;故答案为A.【题目点拨】此题主要考查一次函数和反比例函数的性质,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、144°.【解题分析】

根据多边形的内角和定理分别求出∠BAE=∠AED=∠FAM=∠AMH,即可求出∠EAM和∠BAF的度数,根据旋转的性质,分顺时针和逆时针讨论,取x的最小值.【题目详解】∵五边形ABCDE,AFGHM是正五边形∴∠BAE=∠AED=∠FAM=∠AMH108°,∴∠AEM=∠AME=72°,∴∠EAM=180°﹣72°﹣72°=36°,∠BAF=360°-∠BAE-∠FAM-∠EAM=108°,∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,顺时针旋转最小需:36°+108°=144°,逆时针旋转最小需:108°+108°=216°,∴x的最小值为36°+108°=144°故答案为:144°.【题目点拨】本题考查多边形的内角和外角,旋转的性质.能分情况讨论找出旋转前后对应线段并由此计算旋转角是解决此题的关键.12、1.【解题分析】

根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【题目详解】解:∵2<x<3,

∴|x-2|=x-2,|3-x|=3-x,

原式=|x-2|+3-x

=x-2+3-x

=1.

故答案为:1.【题目点拨】本题考查二次根式的性质及绝对值的性质,能正确根据二次根式的性质进行化简是解题的关键.13、【解题分析】

根据平移的性质可得,即可求得的周长.【题目详解】平移,,,,故答案为:1.【题目点拨】本题考查了三角形平移的问题,掌握平移的性质是解题的关键.14、【解题分析】

由菱形的性质可得AB=2,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【题目详解】解:如图所示:∵菱形ABCD的周长为8,∴AB=2,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=1,∴BO=,∴BD=,故答案为:.【题目点拨】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.15、【解题分析】

根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.【题目详解】解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,因为折痕相互垂直平分,所以四边形是菱形,而菱形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.故答案为:30°或60°.【题目点拨】本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.16、63【解题分析】

先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.【题目详解】如图,∵菱形ABCD中,AE垂直平分BC,∴AB=BC,AB=AC,OA=12AC,OB=12BD,AC⊥∴AB=BC=AC=6,∴OA=3,∴OB=AB∴BD=2OB=63,故答案为:63.【题目点拨】本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.17、(-3,1)【解题分析】

根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【题目详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【题目点拨】此题考查坐标确定位置,解题关键在于建立直角坐标系.18、48【解题分析】

在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.【题目详解】∵AC⊥BC,∴∠ACB=90°,在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,∴平行四边形ABCD的面积为:BC×AC=6×8=48.故答案为:48.【题目点拨】本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.三、解答题(共66分)19、(1)详见解析;(2);(3)【解题分析】

(1)作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE、EF,四边形ADEF即为所求;(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,由此即可解决问题;(3)利用三角形的中位线定理即可解决问题.【题目详解】(1)D,E,F的位置如图所示.(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,∴S四边形AFEM=3××42=12;(3)当AB=AC时,易知DE是△ABC的中位线,∴DE=AC∴=.【题目点拨】本题考查菱形的判定和性质,复杂作图,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1);(2)元【解题分析】

(1)设这种电子产品价格的平均下降率为,根据今年年底的价格是两年前的列方程求解即可;(2)根据明年的价格=今年的价格×(1-平均下降率)即可.【题目详解】(1)设这种电子产品价格的平均下降率为,由题意得解得,(不合题意,舍去)即这种电子产品价格的平均下降率为.(2)(元)预测明年该电子产品的价格为元【题目点拨】此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.21、(1)证明过程见解析;(2)四边形的面积为30.【解题分析】

(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等的四边形是平行四边形可证明AECF是平行四边形;(2)由可得BC=8,由折叠性质可设BE=EM=x,根据,可以求出x的值,进而求出四边形的面积.【题目详解】(1)证明:∵四边形ABCD为矩形∴AB=CD,AD∥CB,∠B=∠D=90°,∠BAC=∠DCA由翻折性质可知:∠EAB=∠BAC,∠DCF=∠DCA∴∠EAB=∠DCF在△ABE和△CDF中∴△ABE≌△CDF∴BE=DF∴AF=CE又AF∥CE∴四边形AECF是平行四边形.(2)解:∵∴BC=8由翻折性质可知:BE=EM可设BE=EM=x且即:解得x=3∴CE=BC-BE=8-3=5∴【题目点拨】本题主要考查全等三角形的性质与判定,平行四边形以及直角三角形,是一个比较综合性的题目.22、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解题分析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.23、小欣这学期的数学总评成绩为91分.【解题分析】

根据加权平均数的计算公式即可得.【题目详解】由题意得:小欣这学期的数学总评成绩为(分)答:小欣这学期的数学总评成绩为91分.【题目点拨】本题考查了加权平均数的应用,熟记公式是解题关键.24、证明见解析【解题分析】试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论