2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省河源市和平县数学八年级第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.点()在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)2.如图,将菱形竖直位置的对角线向右平移acm,水平位置的对角线向上平移bcm,平移后菱形被分成四块,最大一块与最小一块的面积和记为,其余两块的面积和为,则与的差是()A.abcm2 B.2abcm2 C.3abcm2 D.4abcm23.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.04.如图,正方形的边长为3,将正方形折叠,使点落在边上的点处,点落在点处,折痕为。若,则的长是A.1 B. C. D.25.要使分式有意义,则x的取值满足的条件是()A. B. C. D.6.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是()A. B. C.2 D.27.已知一次函数y=kx+b(k≠0),若k+b=0,则该函数的图像可能是A. B.C. D.8.菱形的对角线不一定具有的性质是()A.互相平分 B.互相垂直 C.每一条对角线平分一组对角 D.相等9.要使式子有意义,则x的值可以是()A.2 B.0 C.1 D.910.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y(km)与时间x(min)之间的对应关系.根据图象,下列说法中正确的是()A.小明吃早餐用了17minB.食堂到图书馆的距离为0.8kmC.小明读报用了28minD.小明从图书馆回家的速度为0.8km/min11.如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C.若∠ACB=∠AC'B'=90°,AC=BC=3,则B'C的长为()A.33 B.6 C.32 D.2112.将函数的图象向上平移5个单位长度,得到的函数解析式为()A. B.C. D.二、填空题(每题4分,共24分)13.若,是一元二次方程的两个根,则的值是_________.14.如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.15.若,则=______.16.对于分式,当x______时,分式无意义;当x______时,分式的值为1.17.已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.18.如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24,则AD=____________三、解答题(共78分)19.(8分)如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.20.(8分)已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(2,4),反比例函数y=mx的图象经过AB的中点D,且与BC交于点E,顺次连接O,D,E(1)求反比例函数y=mx(2)y轴上是否存在点M,使得△MBO的面积等于△ODE的面积,若存在,请求出点M的坐标;若不存在,请说明理由;(3)点P为x轴上一点,点Q为反比例函数y=mx图象上一点,是否存在点P,点Q,使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q21.(8分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教练你会选拔谁参加比赛?为什么?22.(10分)已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.(1)如图,求点A的坐标;(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.23.(10分)如图,在四边形中,,,,,、分别在、上,且,与相交于点,与相交于点.(1)求证:四边形为矩形;(2)判断四边形是什么特殊四边形?并说明理由;(3)求四边形的面积.24.(10分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.25.(12分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;(3)当t何值时△COM≌△AOB,并求此时M点的坐标。26.如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF(1)求证:CD=EF;(2)求EF的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【题目详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.【题目点拨】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.2、D【解题分析】

作HK关于AC的对称线段GL,作FE关于BD的对称线段IJ,由对称性可知,图中对应颜色的部分面积相等,即可求解.【题目详解】解:如图,作HK关于AC的对称线段GL,作FE关于BD的对称线段IJ,

由对称性可知,图中对应颜色的部分面积相等,

∴s1与s2的差=4SOMNP,

∵OM=a,ON=b,

∴4SOMNP=4ab,

故选:D.【题目点拨】本题考查菱形的性质,图形的对称性;通过作轴对称图形,将面积进行转化是解题的关键.3、C【解题分析】

分式的值为1,则分母不为1,分子为1.【题目详解】∵|x|﹣2=1,∴x=±2,当x=2时,x﹣2=1,分式无意义.当x=﹣2时,x﹣2≠1,∴当x=﹣2时分式的值是1.故选C.【题目点拨】分式是1的条件中特别需要注意的是分母不能是1,这是经常考查的知识点.4、B【解题分析】

设DF为x,根据折叠的性质,利用Rt△A’DF中勾股定理即可求解.【题目详解】∵A’C=2,正方形的边长为3,∴A’D=1,设DF=x,∴AF=3-x,∵折叠,∴A’F=AF=3-x,在Rt△A’DF中,A’F2=DF2+A’D2,即(3-x)2=x2+12,解得x=故选B.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知正方形的性质及勾股定理的应用.5、B【解题分析】

根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.【题目详解】由分式有意义的条件可得x+2≠0,解得x≠-2.故答案选B.【题目点拨】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.6、B【解题分析】

由已知条件可得EN与EF的长,进而可得Rt△NEF的面积,即可求解四边形MENF的面积.【题目详解】解:∵E,F为BD的三等分点,∴DE=EF=BF,∵AE⊥BD,CF⊥BD,∴EN∥FC,∴EN是△DFC的中位线,∴EN=FC.∵在Rt△DCF中,∠BDC=30°,DC=4,∴FC=2,∴EN=1,∴在Rt△DEN中,∠EDN=30°,∴DN=2EN=2,DE==,∴EF=DE=,∴S△ENF=×1×=,四边形MENF的面积=×2=.故选B.【题目点拨】本题考查了平行四边形的性质,三角形中位线定理.7、A【解题分析】

由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【题目详解】解:由题意可知:当k<0时,则b>0,图象经过一、二、四象限;当k>0时,则b<0,图象经过一、三、四象限.故选A.【题目点拨】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.8、D【解题分析】

根据菱形的对角线性质,即可得出答案.【题目详解】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,

∴菱形的对角线不一定具有的性质是相等;

故选:D.【题目点拨】此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.9、D【解题分析】

式子为二次根式,根据二次根式的性质,被开方数大于等于0,可得x-50,解不等式就可得到答案.【题目详解】∵式子有意义,∴x-50,∴x5,观察个选项,可以发现x的值可以是9.故选D.【题目点拨】本题考查二次根式有意义的条件.10、A【解题分析】

根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;食堂到图书馆的距离为0.8﹣0.6=0.2km,故选项B错误;小明读报用了58﹣28=30min,故选项C错误;小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min,故选项D错误.故选A.【题目点拨】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11、A【解题分析】

根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算即可.【题目详解】∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+B∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=AC故选A.【题目点拨】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12、A【解题分析】

根据函数图象上加下减,可得答案.【题目详解】由题意,得y=2x+5,即y=2x+5,故选:A.【题目点拨】此题考查一次函数图象与几何变换,解题关键在于掌握平移法则二、填空题(每题4分,共24分)13、6【解题分析】

首先把提公因式进行因式分解得到,然后运用韦达定理,,最后代入求值.【题目详解】=由韦达定理可知:代入得:故答案为6【题目点拨】本题考查了一元二次方程两根之间的关系,由韦达定理可知,的两根为,则.14、3+2【解题分析】

证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.【题目详解】∵正方形OABC顶点B的坐标为(3,3),∴正方形的面积为1.所以阴影部分面积为1×=2.∵四边形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面积=△OAE面积.∴△OCF面积=四边形FDAE面积=2÷2=3.设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周长为3+2.故答案为3+2.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.15、1【解题分析】

根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案【题目详解】∵∴∴∴故答案为1.【题目点拨】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.16、【解题分析】

根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【题目详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.【题目点拨】本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.17、x<-1.【解题分析】试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,∴关于x的不等式ax+b>kx的解是x<-1.考点:一次函数与一元一次不等式.18、13【解题分析】

根据平行四边形对角线互相平分先求出AO、OD的长,再根据AC⊥BD,在Rt△AOD中利用勾股定理进行求解即可.【题目详解】∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×24=12,又∵AC⊥BD,∴∠AOD=90°,∴AD==13,故答案为:13.【题目点拨】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析.【解题分析】

(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;

(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.【题目详解】证明:(1)由折叠知:CE=HE,在矩形ABCD中,AD//BC,∴∠AFG=∠FGE=∴∠HGE=∠FGH-∠FGE=在RtΔGHE中,∠HGE=∴HE=又∵CE=HE,∴CE=12(2)连接DG、CH由折叠知:点D和G、点C和点H都关于直线EF成轴对称∴EF⊥DG,∴DG//CH【题目点拨】考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.20、(1)y=4x;(2)M(0,3)或(0,﹣3);(3)存在;以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23,【解题分析】

(1)根据矩形的性质以及点B为(2,4),求得D的坐标,代入反比例函数y=mx中,即可求得m的值,即可得;

(2)依据D、E的坐标联立方程,应用待定系数法即可求得直线DE的解析式,然后△DOE面积即可求,再利用△MBO的面积等于△ODE的面积,即可解出m的值,从而得到M点坐标;

(3)根据题意列出方程,解方程即可求得Q【题目详解】(1)∵四边形OABC为矩形,点B为(2,4),∴AB=2,BC=4,∵D是AB的中点,∴D(1,4),∵反比例函数y=mx图象经过AB的中点D∴4=m1,m∴反比例函数为y=4x(2)∵D(1,4),E(2,2),设直线DE的解析式为y=kx+b,∴k+b=∴直线DE的解析式为y=﹣2x+6,∴直线DE经过(3,0),(0,6),∴△DOE的面积为3×6÷2﹣6×1÷2﹣3×2÷2=3;设M(0,m),∴S△AOM=12OM×|xB|=|m|∵△MBO的面积等于△ODE的面积,∴|m|=3,∴m=±3,∴M(0,3)或(0,﹣3);(3)存在;理由:令x=2,则y=2,∴E的坐标(2,2),∵D(1,4),以P、Q、D、E为顶点的四边形为平行四边形,当DE是平行四边形的边时,则PQ∥DE,且PQ=DE,∴P的纵坐标为0,∴Q的纵坐标为±2,令y=2,则2=4x,解得x令y=﹣2,则﹣2=4x,解得x∴Q点的坐标为(﹣2,﹣2);当DE是平行四边形的对角线时,∵D(1,4),E(2,2),∴DE的中点为(32设Q(a,4a)、P(x∴4a÷2=3,∴a=23,x=∴P(23故使得以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23【题目点拨】本题考查的知识点是反比例函数的综合运用,解题关键是利用反比例函数的性质作答.21、乙同学的成绩较稳定,应选乙参加比赛【解题分析】试题分析:比较甲、乙两人的成绩的方差作出判断.试题解析:=(7+8+6+8+6+5+9+10+4+7)=7;

S甲2=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;=(9+5+7+8+6+8+7+6+7+7)=7;

S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;

∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,

∴乙同学的成绩较稳定,应选乙参加比赛.22、(1)(1,0);(2);(3)存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形.【解题分析】

(1)通过解一元二次方程可求出OA的长,结合点A在x轴正半轴可得出点A的坐标;(2)连接CE,设OE=m,则AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,进而可得出点E的坐标,同理可得出点D的坐标,根据点D,E的坐标,利用待定系数法可求出直线DE的解析式;(3)根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2),分AB为边和AB为对角线两种情况考虑:①当AB为边时,利用平行四边形的性质可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论;②当AB为对角线时,利用平行四边形的对角线互相平分,可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论.综上,此题得解.【题目详解】(1)解方程x2-12x+32=0,得:x1=2,x2=1.∵OA、OC的长是方程x2-12x+32=0的两个根,且OA>OC,点A在x轴正半轴上,∴点A的坐标为(1,0).(2)连接CE,如图2所示.由(1)可得:点C的坐标为(0,2),点B的坐标为(1,2).设OE=m,则AE=CE=1-m.在Rt△OCE中,∠COE=90°,OC=2,OE=m,∴CE2=OC2+OE2,即(1-m)2=22+m2,解得:m=3,∴OE=3,∴点E的坐标为(3,0).同理,可求出BD=3,∴点D的坐标为(5,2).设直线DE解析式为:∴∴直线DE解析式为:(3)∵点A的坐标为(1,0),点C的坐标为(0,2),点B的坐标为(1,2),∴直线AC的解析式为y=-x+2,AB=2.设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2).分两种情况考虑,如图5所示:①当AB为边时,,解得:c1=,c2=,∴点Q1的坐标为(,),点Q2的坐标为(,);②当AB为对角线时,,解得:,∴点Q3的坐标为(,-).综上,存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形【题目点拨】本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A的坐标;(2)利用勾股定理,求出点D,E的坐标;(3)分AB为边和AB为对角线两种情况,利用平行四边形的性质求出点Q的坐标.23、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)【解题分析】

(1)由平行线的性质证出∠BCD=90°即可;(2)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH//FP,EF//HP,推出平行四边形EFPH,根据矩形的判定推出即可;(3)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.【题目详解】(1)证明:∵AB//CD,∴∠CBA+∠BCD=180°,∵∠CBA=∠ADC=90°,∴∠BCD=90°,∴四边形ABCD是矩形;(2)解:四边形EFPH为矩形;理由如下:∵四边形ABCD是矩形,∴AD=BC=5,AB=CD=2,AD∥BC,由勾股定理得:CE=,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.∵DE=BP,DE//BP,∴四边形DEBP是平行四边形,∴BE//DP,∵AD=BC,AD//BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP//CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:∵四边形AECP是平行四边形,∴PD=BE=2,在Rt△PCD中,FC⊥PD,PC=BC-BP=4,由三角形的面积公式得:PD•CF=PC•CD,∴CF=,∴EF=CE-CF=,∵PF=,∴S矩形EFPH=EF•PF=,即:四边形EFPH的面积是.【题目点拨】本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.24、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解题分析】

(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【题目详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,∴∠OBM=∠OCN=135°,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOM=∠CON,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,∴结论①不成立;结论②成立,理由:如图(1)连接MN,∵△BOM≌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论