版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏南通启东市南苑中学数学八下期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如果,那么代数式的值为()A. B. C. D.2.下列图形不是中心对称图形的是A. B. C. D.3.在中,若,则的度数是()A. B.110° C. D.4.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边5.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.6.同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A.10 B.8 C.9 D.67.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个9.下列各式中,从左到右的变形,属于分解因式的是()A.10x2-5x=5x(2x-1) B.a2-b2-c2=(a-b)(a+b)-c2C.a(m+n)=am+an D.2x2-4y+2=2(x2-2y)10.已知,那么下列式子中一定成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.不等式组的整数解是__________.12.顺次连接等腰梯形各边中点所得的四边形是_____.13.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.14.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).15.点A为数轴上表示实数的点,将点A沿数轴平移3个单位得到点B,则点B表示的实数是________.16.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024816201845摸到白球的频率0.650.620.5930.6040.6010.6200.615请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)17.某学校将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同,若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了_____本..18.在平面直角坐标系中,一次函数(、为常数,)的图象如图所示,根据图象中的信息可求得关于的方程的解为____.三、解答题(共66分)19.(10分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.(1)正方形边长_____________,正方形顶点的坐标为__________________;(2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;(3)当点运动时,点到轴的距离为,求与的函数关系式;(4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.20.(6分)如图,中,已知,,于D,,,如何求AD的长呢?心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,请按照她的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出、的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;(2)设,利用勾股定理,建立关于x的方程模型,求出x的值.21.(6分)解不等式组,并求出其整数解.22.(8分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).(1)求a的值;(2)(-2,a)可看成怎样的二元一次方程组的解?23.(8分)如图①,直线与双曲线相交于点、,与x轴相交于C点.求点A、B的坐标及直线的解析式;求的面积;观察第一象限的图象,直接写出不等式的解集;如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.24.(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.25.(10分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1)网格中画出长为的线段AB.(2)在图(2)网格中画出一个腰长为,面积为3的等腰26.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.【题目详解】原式=•(x-y)=,∵x-3y=0,∴x=3y,∴原式==.故选:D.【题目点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.2、D【解题分析】
根据中心对称图形的概念求解.【题目详解】A、是中心对称图形.故不能选;
B、是中心对称图形.故不能选;
C、是中心对称图形.故不能选;
D、不是中心对称图形.故可以选.故选D【题目点拨】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、B【解题分析】
根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.【题目详解】画出图形如下所示:则∠A+∠B=180°,又∵∠A−∠B=40°,∴∠A=110°,∠B=70°,∴∠C=∠A=110°.故选B【题目点拨】此题考查平行四边形的性质,解题关键在于画出图形4、B【解题分析】试题分析:根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.解:如图所示,∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.即原四边形的对角线相等.故选B.点睛:本题主要考查中点四边形.画出图形,并利用三角形中位线与菱形的性质是解题的关键.5、C【解题分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【题目详解】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【题目点拨】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.6、B【解题分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】题目中数据共有5个,
故中位数是按从小到大排列后第三数作为中位数,
故这组数据的中位数是8.
所以B选项是正确的.【题目点拨】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7、D【解题分析】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.8、C【解题分析】
连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;【题目详解】连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,∵△ABC是边长为3的等边三角形,S△ABC=∴S△ABD∴S△AEF=S△AEC=•S△ABD=故④错误,故选C.【题目点拨】本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.9、A【解题分析】
根据因式分解的定义:将一个多项式化为几个整式乘积的形式叫做因式分解,也叫分解因式,对每个选项逐一判断即可.【题目详解】解:A.10x2-5x=5x(2x-1),符合定义,属于分解因式,故A正确B.a2-b2-c2=(a-b)(a+b)-c2,不符合定义,故B错误;C.a(m+n)=am+an,属于整式的乘法,故C错误;D.2x2-4y+2=2(x2-2y+1),故D错误,故答案为:A.【题目点拨】本题考查了因式分解的概念,判断是否为因式分解的问题,解题的关键是掌握因式分解的概念.10、D【解题分析】
根据比例的性质对各个选项进行判断即可.【题目详解】A.∵,∴3x=2y,∴不成立,故A不正确;B.∵,∴3x=2y,∴不成立,故B不正确;C.∵,∴y,∴不成立,故C不正确;D.∵,∴,∴成立,故D正确;故选D.【题目点拨】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.二、填空题(每小题3分,共24分)11、,,1【解题分析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.【题目详解】解:;由①得:;由②得:;不等式组的解集为:;所以不等式组的整数解为,,1,故答案为:,,1.【题目点拨】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12、菱形【解题分析】
解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:
已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,
求证:四边形EFGH为菱形.
证明:连接AC,BD,
∵四边形ABCD为等腰梯形,
∴AC=BD,
∵E、H分别为AD、CD的中点,
∴EH为△ADC的中位线,
∴EH=AC,EH∥AC,
同理FG=AC,FG∥AC,
∴EH=FG,EH∥FG,
∴四边形EFGH为平行四边形,
同理EF为△ABD的中位线,
∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.
故答案为菱形.13、【解题分析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.14、Q=52﹣8s(0≤s≤6).【解题分析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【题目详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).【题目点拨】本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.15、或【解题分析】
根据点的坐标左移减右移加,可得答案.【题目详解】点A为数轴上表示的点,将点A在数轴上向左平移3个单位长度到点B,则点B所表示的实数为;点A为数轴上表示的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为;故答案为或.【题目点拨】此题考查数轴,解题关键在于掌握平移的性质.16、0.60【解题分析】
计算出平均值即可解答【题目详解】解:由表可知,当n很大时,摸到白球的频率将会接近0.60;故答案为:0.60;【题目点拨】此题考查利用频率估计概率,解题关键在于求出平均值17、【解题分析】
设乙种书籍的单价为每本元,A购买了本,B购买了本,然后分别表示甲的单价,A,B的单价,列方程组利用两方程相减求解即可.【题目详解】解:设乙种书籍的单价为每本元,则甲种书籍的单价为元,A种书籍的单价为每本元,B种书籍的单价为元,设A购买了本,B购买了本,则甲购买了本,乙购买了本,所以:②-①得:所以:,所以:.所以:乙比甲多买了本.故答案为:.【题目点拨】本题考查的是方程组的应用,利用加减法消元找到整体的值是解题关键.18、x=-2【解题分析】
首先根据图像中的信息,可得该一次函数图像经过点(-2,3)和点(0,1),代入即可求得函数解析式,方程即可得解.【题目详解】解:由已知条件,可得图像经过点(-2,3)和点(0,1),代入,得解得即方程为解得【题目点拨】此题主要考查利用一次函数图像的信息求解析式,然后求解一元一次方程,熟练运用,即可解题.三、解答题(共66分)19、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值为3s或s或s.【解题分析】
(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.(2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;(3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.【题目详解】解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所求C点的坐标为(35,2).故答案为30,(35,2)(2)根据题意,易得Q(3,0),点P运动速度每秒钟3个单位长度.故答案为(3,0),3.(3)①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.易知四边形OHKN是矩形,可得OH=KN=5,∵PK∥AH,∴,∴,∴PK=(30﹣t),∴d=PK+KN=﹣t+30.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.同法可得PK=(t﹣30),∴d=PK+KN=t﹣5.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形:当时,△APM与△OPN相似,可得,解得t=3.当时,△APM与△OPN相似,可得,解得t=.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,可得:∠OPN=∠PAM=∠AOP,∵PM⊥OA,∴AM=OM=PN=5,由(3)②可知:5=t﹣5,解得t=.综上所述,拇指条件的t的值为3s或s或s.【题目点拨】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,需要利用参数构建方程解决问题,属于中考压轴题.20、(1)见详解;(2)18【解题分析】
(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-1)2+(x-9)2=152,求出AD=x=1.【题目详解】解:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°
∴∠EAF=90°
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°
又∵AE=AD,AF=AD
∴AE=AF
∴四边形AEGF是正方形(2)解:设AD=x,则AE=EG=GF=x
∵BD=1,DC=9
∴BE=1,CF=9
∴BG=x-1,CG=x-9
在Rt△BGC中,BG2+CG2=BC2
∴(x-1)2+(x-9)2=152
∴(x-1)2+(x-9)2=152,化简得,x2-15x-54=0,整理得(x-18)(x+3)=0
解得x1=18,x2=-3(舍去)
所以AD=x=18【题目点拨】本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.21、,的整数解是3,4【解题分析】
求出不等式组的解集,写出解集范围内的整数即可.【题目详解】解:解不等式①得:解不等式②得:∴该不等式的解集是所以的整数解是3,4,故答案为:,的整数解是3,4【题目点拨】本题考查了求一元一次不等式组的整数解,正确求出不等式组的解集是解题的关键.22、(1)a=-5;(2)可以看作二元一次方程组的解.【解题分析】
(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.【题目详解】.解:(1)设直线的解析式为y=kx+b,将(2,3),(-1,-3)代入,,解得,所以y=2x-1.将x=-2代入,得到a=-5;(2)由(1)知点(-2,-5)是直线与直线交点,则:y=2.5x;因此(-2,a)可以看作二元一次方程组的解.故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.【题目点拨】本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.23、(1);(2);(3);(4)【解题分析】
(1)先确定出点A,B坐标,再用待定系数法求出直线AB解析式;(2)先求出点C,D坐标,再用面积的差即可得出结论;(3)先确定出点P的位置,利用三角形的三边关系,最后用待定系数法求出解析式,即可得出结论.【题目详解】解:(1)∵点、在双曲线上,,,,,点A,B在直线上,,,直线AB的解析式为;(2)如图,由(1)知,直线AB的解析式为,,,,,;(3)由(1)知,,,由图象知,不等式的解集为;(4)存在,理由:如图2,作点关于x轴的对称点B′(4,-1),连接AB′交x轴于点P,连接BP,在x轴上取一点Q,连接AQ,BQ,点B与点B′关于x轴对称,点P,Q是BB′的中垂线上的点,∴PB′=PB,QB′=QB,在△AQB′中,AQ+B′Q>AB′的最小值为AB′,,B′(4,-1),直线AB′的解析式为,令,,,.【题目点拨】本题是反比例函数综合题,涉及了待定系数法,对称的性质,三角形的面积的计算方法,解本题的关键是求出直线AB的解析式和确定出点P的位置.24、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)【解题分析】
(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【题目详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).【题目点拨】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版杉木林木材市场调研与买卖预测合同3篇
- 二零二五年幼儿园幼儿安全防护责任合同2篇
- 2025年度智能家居门窗系统安装及售后服务合同范本3篇
- 二零二五版农用车租赁管理及技术支持合同3篇
- 2025年度木工材料采购与供应合同范本4篇
- 二零二五年矿山转让协议及矿产资源开发运营合同3篇
- 二零二五年度投资担保公司产业投资基金合同
- 课题申报参考:明清江南文人居室陈设艺术研究
- 2025年度城市地下综合管廊配电箱柜安全防护采购合同4篇
- 二零二五年度文化创意产业合作聘请兼职劳务合同
- 人工智能算法与实践-第16章 LSTM神经网络
- 17个岗位安全操作规程手册
- 数学史简介课件可编辑全文
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 中学安全办2024-2025学年工作计划
- 网络安全保障服务方案(网络安全运维、重保服务)
- 2024年乡村振兴(产业、文化、生态)等实施战略知识考试题库与答案
- 现代科学技术概论智慧树知到期末考试答案章节答案2024年成都师范学院
- 软件模块化设计与开发标准与规范
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 有机农业种植模式
评论
0/150
提交评论