版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市任丘市2024届数学八下期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在中,点、分别为边、的中点,若,则的长度为()A.2 B.3 C.4 D.52.如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A.当时,随的增大而增大B.当时,随的增大而减小C.当时,随的增大而增大D.当时,随的增大而减小3.下列式子是分式的是()A. B. C.x2y D.4.下列从左到右的变形,是因式分解的是()A.(x﹣y)(x+y)=x2﹣y2 B.2x2+4xy=2x(x+2y)C.x2+2x+3=x(x+2)+3 D.(m﹣2)2=m2﹣4m+45.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1) D.x2+y2=(x﹣y)2+2x6.已知一次函数的图象经过第一、三、四象限,则下列结论正确的是()A. B.. C. D.7.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b8.下列各式从左到右的变形中,是因式分解的为(
)A.x(a-b)=ax-bx B.x2-1=(x-1)(x+1)C.x2-1+y2=(x-1)(x+1)+y2 D.ax+bx+c=x(a+b)+c9.于反比例函数y=2x的图象,下列说法中,正确的是(A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点(1,1)D.当x>0时,y随x增大而减小10.下列说法中,错误的是()A.两组对边分别相等的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有三条边相等的四边形是菱形D.对角线互相垂直的矩形是正方形11.关于函数y=2x,下列说法错误的是()A.它是正比例函数 B.图象经过(1,2)C.图象经过一、三象限 D.当x>0,y<012.用配方法解方程x2-8x+9=0时,原方程可变形为()A.(x-4)2=9 B.(x-4)2=7 C.(x-4)2=-9 D.(x-4)2=-7二、填空题(每题4分,共24分)13.已知y=++9,则(xy-64)2的平方根为______.14.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为___.15.在菱形中,已知,,那么__________(结果用向量,的式子表示).16.如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.17.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.18.二次根式有意义的条件是__________.三、解答题(共78分)19.(8分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数
1
2
3
4
5
6
7
8
9
10
11
人数
1
1
6
18
10
6
2
2
1
1
2
(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?20.(8分)如图,已知函数y1=2x+b和y2=ax-3的图象交于点P-2,-5,这两个函数的图象与x(1)分别求出这两个函数的解析式;(2)求ΔABP的面积;(3)根据图象直接写出y1<y221.(8分)如图,在四边形AOBC中,AC//OB,顶点O是原点,顶点B在x轴上,顶点A的坐标为0,8,AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设PQ点运动的时间为ts1求直线BC的函数解析式;2当t为何值时,四边形AOQP是矩形?22.(10分)(1)÷﹣2×+;(2).23.(10分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.24.(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.(3)根据图象,直接写出不等式的解集.25.(12分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG∥AB时,请直接写出t的值.26.某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
根据三角形中位线定理计算即可.【题目详解】解:∵、分别为边、的中点,,
∴BC=2DE=4,
故选C.【题目点拨】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、A【解题分析】
根据一次函数的图象对各项分析判断即可.【题目详解】观察图象可知:A.当时,图象呈上升趋势,随的增大而增大,正确.B.当时,图象呈上升趋势,随的增大而减小,故错误.C.当时,随的增大而减小,当时,随的增大而增大,故错误.D.当时,随的增大而减小,当时,随的增大而增大,故错误.故选A.【题目点拨】考查一次函数的图象与性质,读懂图象是解题的关键.3、B【解题分析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:,x2y,均为整式,是分式,故选:B【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.4、B【解题分析】
根据因式分解的概念逐一进行分析即可.【题目详解】A.(x﹣y)(x+y)=x2﹣y2,从左到右是整式的乘法,故不符合题意;B.2x2+4xy=2x(x+2y),符合因式分解的概念,故符合题意;C.x2+2x+3=x(x+2)+3,不符合因式分解的概念,故不符合题意;D.(m﹣2)2=m2﹣4m+4,从左到右是整式的乘法,故不符合题意,故选B.【题目点拨】本题考查了因式分解的概念,熟练掌握因式分解是指将一个多项式写成几个整式积的形式是解题的关键.5、C【解题分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【题目详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【题目点拨】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.6、B【解题分析】
利用一次函数图象性质,图象经过第一、三、四象限,,即可解答.【题目详解】一次函数,图象经过第一、三、四象限,则,解得:故选B.【题目点拨】本题考查了一次函数的图象特征,熟练掌握函数图象所经过象限与k、b之间的关系是解题关键.7、B【解题分析】
根据两内项之积等于两外项之积对各选项分析判断即可得解.【题目详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【题目点拨】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.8、B【解题分析】
根据因式分解的的定义即可完成本题。【题目详解】解:A选项没有写成因式积的形式,故A错;B选项写成因式积的形式,故B正确;C选项没有写成因式积的形式,故C错;D选项没有写成因式积的形式,故D错;故答案为B.【题目点拨】本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。9、D【解题分析】
根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【题目详解】:A.∵k=2>0,∴它的图象在第一、三象限,故A选项错误;B.图象的两个分支关于y=-x对称,故B选项错误;C.把点(1,1)代入反比例函数y=2x得2≠1,故D.当x>0时,y随x的增大而减小,故D选项正确.故选D.【题目点拨】本题考查了反比例函数y=kx(k≠0)的图象及性质,①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随10、C【解题分析】
分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.【题目详解】A.利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;B.利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;C.根据四条边相等的四边形是菱形可知本选项错误;D.根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,故选C.【题目点拨】此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.11、D【解题分析】
根据正比例函数的图象与系数的关系解答,对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.【题目详解】关于函数y=2x,A、它是正比例函数,说法正确,不合题意;B、当x=1时,y=2,图象经过(1,2),说法正确,不合题意;C、图象经过一、三象限,说法正确,不合题意;D、当x>0时,y>0,说法错误,符合题意;故选D.【题目点拨】此题考查了正比例函数的性质和,熟练掌握正比例函数的定义与性质是解题关键.12、B【解题分析】
方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形得到结果,即可做出判断.【题目详解】方程x2-8x+9=0,变形得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,故选B.【题目点拨】本题考查了解一元二次方程-配方法,熟练掌握配方法的一般步骤以及完全平方公式的结构特征是解本题的关键.二、填空题(每题4分,共24分)13、±1【解题分析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.【题目详解】解:由题意得:,解得:x=7,则y=9,(xy-64)2=1,1的平方根为±1,故答案为:±1.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14、3×()1【解题分析】
根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2018=3×()1.【题目详解】∵∠A2OC2=30°,OA1=OC2=3,
∴;
∵,
∴;
∵,
∴,
∴,
而2018=4×504+2,
∴点A2018在y轴的正半轴上,
∴点A2018的纵坐标为:.
故答案为:.【题目点拨】本题考查的知识点是规律型和点的坐标,解题关键是利用发现的规律进行解答.15、【解题分析】
根据菱形的性质可知,,然后利用即可得出答案.【题目详解】∵四边形是菱形,∴,∵,,∴∴故答案为:.【题目点拨】本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.16、1【解题分析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【题目详解】解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.【题目点拨】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,17、1【解题分析】
根据平行四边形性质求出AD∥BC,由平行线的性质可得∠AEB=∠CBE,然后由角平分线的定义知∠ABE=∠AEB,所以∠ABE=∠AEB,即可得AB=AE,由此即可求出DE的长.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=3,∴DE=AD-AE=5-3=1.故答案是:1.【题目点拨】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE是解题的关键.18、【解题分析】
根据被开方式大于零列式求解即可.【题目详解】由题意得x-3>0,∴x>3.故答案为:x>3.【题目点拨】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.三、解答题(共78分)19、(1)中位数为4个,众数为4个,平均数为5个(2)中位数或众数,理由见解析(3)25200人【解题分析】
试题分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以总人数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.试题解析:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)(人).故估计该市九年级男生引体向上项目测试的合格人数是25200人.考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.20、(1)y1=2x-1,y2=x-3;(2)S△ABC=254;【解题分析】
(1)把点P(-2,-5)分别代入函数y1=2x+b和y2=ax-3,求出a、b的值即可;(2)根据(1)中两个函数的解析式得出A、B两点的坐标,再由三角形的面积公式即可得出结论;(3)直接根据两函数图象的交点坐标即可得出结论.【题目详解】(1)∵将点P-2,-5代入y1=2x+b,得-5=2×将点P-2,-5代入y2=ax-3,得-5=a×∴这两个函数的解析式分别为y1=2x-1和(2)∵在y1=2x-1中,令y1∴A1∵在y2=x-3中,令y2∴B3,0∴S(3)由函数图象可知,当x<-2时,y1【题目点拨】本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.21、(1)y=-4x+104;(2)t为6.5.【解题分析】
(1)首先根据顶点A的坐标为(0,8),AC=24cm,OB=26cm,分别求出点B、C的坐标各是多少;然后应用待定系数法,求出直线BC的函数解析式即可.(2)根据四边形AOQP是矩形,可得AP=OQ,据此求出t的值是多少即可.【题目详解】解:(1)如图∵顶点A的坐标为(0,8∴B(26,设直线BC的函数解析式是y=kx+b,则26k+b=0解得k=-4b=104∴直线BC的函数解析式是y=-4x+104.(2)如图根据题意得:AP=tcm,BQ=3tcm,则OQ=OB-BQ=26-3t(cm∵四边形AOQP是矩形,∴AP=OQ,∴t=26-3t,解得t=6.5,∴当t为6.5时,四边形AOQP是矩形.【题目点拨】此题考查了矩形的性质、待定系数法求一次函数的解析式以及动点问题.注意掌握矩形的判定方法是解此题的关键.22、(1)3;(2)-6.【解题分析】分析:(1)先把各二次根式进行化简,然后再进行乘除运算,最后合并同类二次根式即可得解;(2)先把二次根式进行化简和云绝对值符号,然后再进行乘除运算,最后合并同类二次根式即可得解.详解:(1)原式===3.(2)原式==-6.点睛:熟练掌握二次根式的化简,灵活运用运算律解题.在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.23、或【解题分析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.【题目详解】∵四边形ABCD是长方形,∴∠D=90°,AB=CD=8,∵CE=5,∴DE=3,在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE=5过E作EM⊥AB于M,过P作PQ⊥CD于Q,则AM=DE=3,若△PAE是等腰三角形,则有三种可能:当EP=EA时,AP=2DE=6,所以t==2;当AP=AE=5时,BP=8−5=3,所以t=3÷1=3;当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,则解得:x=,则t=(8−)÷1=,综上所述t=2或时,△PAE为等腰三角形。故答案为:2或.【题目点拨】本题考查等腰三角形的性质,分情况求得t的值是解题关键.24、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解题分析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【题目详解】(1)∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函数解析式y=﹣,反比例函数解析式y=.(2)根据题意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4【题目点拨】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.25、(1)25;(2)能,t=;(3),;(4)和【解题分析】
(1)根据中位线的性质求解即可;(2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;(3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;(4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人商业地产抵押贷款合同书规范
- 2025年度个人商铺租赁合同装修工程监督合同4篇
- 二零二五年度厨师个人厨房团队聘用合同集锦2篇
- 2025年度个人住宅地下室防水检测合同范本
- 2025年度现代农业设施建设及运维服务合同范本4篇
- 二零二五年度酒店窗帘定制安装工程合同3篇
- 2025年度模具采购合同与模具制造过程质量控制合同4篇
- 2025年度户外木制品加工与安装劳务合同4篇
- 二零二五年度农产品冷链物流配送服务合同8篇
- 二零二五年度生态环保工程承包商作业安全保障合同3篇
- 2025-2030年中国草莓市场竞争格局及发展趋势分析报告
- 华为智慧园区解决方案介绍
- 奕成玻璃基板先进封装中试线项目环评报告表
- 广西壮族自治区房屋建筑和市政基础设施全过程工程咨询服务招标文件范本(2020年版)修订版
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 2024新版有限空间作业安全大培训
- GB/T 44304-2024精细陶瓷室温断裂阻力试验方法压痕(IF)法
- 年度董事会工作计划
- 《退休不褪色余热亦生辉》学校退休教师欢送会
- 02R112拱顶油罐图集
- 2021年新教材重庆生物高考真题(含答案解析)
评论
0/150
提交评论