2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题含解析_第1页
2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题含解析_第2页
2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题含解析_第3页
2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题含解析_第4页
2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市下沙区八年级数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.只用一种多边形不能镶嵌整个平面的是()A.正三角形 B.正四边形 C.正五边形 D.正六边形2.下列选项中的图形,不属于中心对称图形的是(

)A.

B.

C.

D.3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.114.如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD5.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是(

)A.y=3(x-2)2+1

B.y=3(x+2)2-1

C.y=3(x-2)2-1

D.y=3(x+2)2+17.计算的结果为()A.±3 B.-3 C.3 D.98.式子①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④9.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.410.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.12.外角和与内角和相等的平面多边形是_______________.13.菱形的两条对角线长分别为cm和cm,则该菱形的面积__________.14.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.15.如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.16.计算:=_________.17.某产品出现次品的概率为0.05,任意抽取这种产品400件,那么大约有_____件次品.18.若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为_____三、解答题(共66分)19.(10分)如图,在四边形AOBC中,AC//OB,顶点O是原点,顶点B在x轴上,顶点A的坐标为0,8,AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设PQ点运动的时间为ts1求直线BC的函数解析式;2当t为何值时,四边形AOQP是矩形?20.(6分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.(1)若点的坐标是,则,;(2)设直线与轴分别交于点,求证:是等腰三角形;(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.21.(6分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.22.(8分)反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.(1)求的值并结合图像求出的取值范围;(2)在点运动过程中,求线段最短时点的坐标;(3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;(4)在点运动过程中使得求出此时的面积.23.(8分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.24.(8分)已知:,求得值.25.(10分)解不等式组:请结合题意填空,完成本题的解答.(1)解不等式①,得;

(2)解不等式②,得;

(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.26.(10分)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象.(1)李越骑车的速度为______米/分钟;(2)B点的坐标为______;(3)李越从乙地骑往甲地时,s与t之间的函数表达式为______;(4)王明和李越二人______先到达乙地,先到______分钟.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【题目详解】解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;

B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;

C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;

D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.

故选:C.【题目点拨】本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.2、B【解题分析】

根据中心对称图形特点分别分析判断,中心对称图形绕一个点旋转180°后图形仍和原来图形重合.【题目详解】解:A、属于中心对称图形,不符合题意;B、不是中心对称图形,符合题意;C、是中心对称图形,不符合题意;D、是中心对称图形,不符合题意.故答案为:B【题目点拨】本题考查的中心对称图形,由其特点进行判断是解题的关键.3、C【解题分析】

首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【题目详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.【题目点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.4、B【解题分析】

由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【题目详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.【题目点拨】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.5、A【解题分析】

由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.【题目详解】由图象可知A、B两城市之间的距离为300km,故①正确;甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选A.【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.6、D【解题分析】

试题分析:二次函数的平移规律:上加下减,左加右减.把二次函数的图象向左平移2个单位,得到再向上平移1个单位,得到故选D.考点:二次函数的性质点评:本题属于基础应用题,只需学生熟练掌握二次函数的平移规律,即可完成.7、C【解题分析】

根据=|a|进行计算即可.【题目详解】=|-3|=3,故选:C.【题目点拨】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.8、C【解题分析】

式子①,②,③,④中,是分式的有,故选C.9、B【解题分析】

试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).10、C【解题分析】试题分析:根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.解:(1)为了检测一批电视机的使用寿命适用抽样调查;(2)为了调查全国平均几人拥有一部手机适用抽样调查;(3)为了解本班学生的平均上网时间适用全面调查;(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;故选C.二、填空题(每小题3分,共24分)11、1【解题分析】试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3,∴AE==1,∵DE∥BC,∴AE=BE=1,∴当点D落在BC上时,平移的距离为BE=1.考点:平移的性质12、四边形【解题分析】

设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.【题目详解】设此多边形是n边形,由题意得:解得故答案为:四边形.【题目点拨】本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.13、【解题分析】

根据菱形的面积等于两对角线乘积的一半即可求得其面积.【题目详解】由已知得,菱形面积=.故答案为:.【题目点拨】此题考查菱形的性质,解题关键在于掌握运算公式.14、

【解题分析】

根据正方形对角线等于边长的倍得出规律即可.【题目详解】由题意得,a1=1,

a2=a1=,a3=a2=()2,a4=a3=()3,…,an=an-1=()n-1.=[()n-1]2=故答案为:【题目点拨】本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.15、1【解题分析】

根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.【题目详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,CD=AD,∵△DCE是正三角形,∴DE=DC=AD,∠CDE=∠DEC=60°,∴△ADE是等腰三角形,∠ADE=90°+60°=150°,∴∠DAE=∠DEA==15°,同理可得:∠CBE=∠CEB=15°,∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,故答案为:1.【题目点拨】此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.16、【解题分析】

先利用二次根式的性质,再判断的大小去绝对值即可.【题目详解】因为,所以故答案为:【题目点拨】此题考查的是二次根式的性质和去绝对值.17、1.【解题分析】

利用总数×出现次品的概率=次品的数量,进而得出答案.【题目详解】解:由题意可得:次品数量大约为400×0.05=1.故答案为1.【题目点拨】本题考查概率的意义,正确把握概率的定义是解题的关键.18、<a≤1【解题分析】

先将a看作常数解不等式,根据最小整数解为5,得1<≤5,解出即可.【题目详解】解不等式2x-3a+2≥0得x≥,∵不等式的最小整数解为5,∴1<≤5,∴<a≤1,故答案为<a≤1.【题目点拨】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.三、解答题(共66分)19、(1)y=-4x+104;(2)t为6.5.【解题分析】

(1)首先根据顶点A的坐标为(0,8),AC=24cm,OB=26cm,分别求出点B、C的坐标各是多少;然后应用待定系数法,求出直线BC的函数解析式即可.(2)根据四边形AOQP是矩形,可得AP=OQ,据此求出t的值是多少即可.【题目详解】解:(1)如图∵顶点A的坐标为(0,8∴B(26,设直线BC的函数解析式是y=kx+b,则26k+b=0解得k=-4b=104∴直线BC的函数解析式是y=-4x+104.(2)如图根据题意得:AP=tcm,BQ=3tcm,则OQ=OB-BQ=26-3t(cm∵四边形AOQP是矩形,∴AP=OQ,∴t=26-3t,解得t=6.5,∴当t为6.5时,四边形AOQP是矩形.【题目点拨】此题考查了矩形的性质、待定系数法求一次函数的解析式以及动点问题.注意掌握矩形的判定方法是解此题的关键.20、(1),.(2)详见解析;(3),理由详见解析.【解题分析】

(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.【题目详解】(1)∵点P(1,4)在反比例函数图象上,∴k=4×1=4,∵B点横坐标为4,∴B(4,1),连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,则D(4,4),∴PP′=1,P′O=4,OB′=4,BB′=1,∴BD=4-1=3,PD=4-1=3,∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,∵A、B关于原点对称,∴OA=OB,∴S△PAO=S△PBO,∴S△PAB=2S△PBO=15;(2)∵点P是第一象限内反比例函数图象上的动点,且在直线AB的上方,∴可设点P坐标为(m,),且可知A(-4,-1),设直线PA解析式为y=k′x+b,把A、P坐标代入可得,解得,∴直线PA解析式为,令y=0可求得x=m-4,∴M(m-4,0),同理可求得直线PB解析式为,令y=0可求得x=m+4,∴N(m+4,0),作PG⊥x轴于点G,如图2,则G(m,0),∴MG=m-(m-4)=4,NG=m+4-m=4,∴MG=NG,即G为MN中点,∴PG垂直平分MN,∴PM=PN,即△PMN是等腰三角形;(3)∠PAQ=∠PBQ,理由如下:连接QA交x轴于M′,连接QB并延长交x轴于点N′,如图3,由(2)可得PM′=PN′,即∠QM′O=∠QN′O,∴∠MM′A=∠QN′O,由(2)知∠PMN=∠PNM,∴∠PMN-∠MM′A=∠PNM-∠QN′O,∴∠PAQ=∠NBN′,又∠NBN′=∠PBQ,∴∠PAQ=∠PBQ.【题目点拨】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、垂直平分线的判定和性质、等于腰三角形的判定和性质等知识.在(1)中求三角形面积时注意矩形的构造,在(2)中设出P点坐标求得MG=NG是解题的关键,在(3)中注意(2)中结论的应用.本题考查知识点较多,综合性较强,难度适中.21、(1)m=4;(2)【解题分析】

(1)把点P(2,m)代入直线y=2x可求m的值;(2)先求得PB=4,根据三角形面积公式可求AB=1,可得A1(5,0),A2(-1,0),再根据待定系数法可求k的值.【题目详解】(1)∵直线过点P(2,m),∴m=4(2)∵P(2,4),∴PB=4又∵△PAB的面积为6,∴AB=1.∴A1(5,0),A2(-1,0)当直线经过A1(5,0)和P(2,4)时,可得k=当直线经过A2(-1,0)和P(2,4)时,可得k=.综上所述,k=.【题目点拨】本题主要考查一次函数的交点问题,根据三角形面积间的关系得出点A的坐标及熟练掌握待定系数法求函数解析式是解题的关键.22、(1),,(2),(3)能,,(4)【解题分析】

(1)先把(1,3)代入求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;(2)根据线段OC最短可知OC为∠AOB的平分线,对于,令,即可得出C点坐标,把代入中求出的值即可得出P点坐标;(3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P横纵坐标相等且在直线上即可得出结论.(4)设,则,,根据PD=DB,构建方程求出,即可解决问题.【题目详解】解:(1)∴反比例函数(x>0,k≠0)的图象进过点(1,3),∴把(1,3)代入,解得,.∵,∴,,∴由图象得:;(2)∵线段OC最短时,∴OC为∠AOB的平分线,∵对于,令,∴,即C,∴把代入中,得:,即P;(3)四边形O′COD能为菱形,∵当OC=OD时,四边形O′COD为菱形,∴由对称性得到△AOC≌△BOD,即OA=OB,∴此时P横纵坐标相等且在直线上,即,解得:,即P.(4)设B,则,∵PD=DB,∴,解得:(舍弃),∴,D,,,【题目点拨】本题属于反比例函数综合题,考查的是反比例函数的图像与性质,涉及到菱形的判定与性质、全等三角形的判定与性质等知识,在解答此题时要注意利用数形结合求解.23、已知:①③(或①④或②④或③④),证明见解析.【解题分析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论