




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省六安市天堂寨初级中学八年级数学第二学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在中,对角线相交于点,以点为坐标原点建立平面直角坐标系,其中,则点的坐标是()A. B. C. D.2.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个3.已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是()A.两点关于x轴对称B.两点关于y轴对称C.两点关于原点对称D.点(-2,3)向右平移两个单位得到点(2,3)4.方程中二次项系数一次项系数和常数项分别是()A.1,-3,1 B.-1,-3,1 C.-3,3,-1 D.1,3,-15.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)6.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6 B.11 C.12 D.187.下列计算正确的是()A.3xy2C.2a28.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,69.若分式的值为0,则的值是()A. B. C.0 D.310.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.25 B. C. D.二、填空题(每小题3分,共24分)11.要使分式有意义,x需满足的条件是.12.平面直角坐标系中,点关于原点的对称点坐标为______.13.若数据,,…,的方差为6,则数据,,…,的方差是______.14.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.15.若分式的值为零,则x的值为_____.16.若关于x的分式方程的解为非负数,则a的取值范围是_____.17.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。18.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.三、解答题(共66分)19.(10分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.20.(6分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15,AB=9.求:(1)FC的长;(2)EF的长.21.(6分)如图,在四边形AECF中,∠E=∠F=90°.CE、CF分别是△ABC的内,外角平分线.(1)求证:四边形AECF是矩形.(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.22.(8分)如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:DE=AF;(2)若AB=4,BG=3,求AF的长;(3)如图2,连接DF、CE,判断线段DF与CE的位置关系并证明.23.(8分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.24.(8分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.(1)求的长;(2)若四边形为平行四边形时,求的周长;(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.25.(10分)某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的众数是分,九(2)班复赛成绩的中位数是分;(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.26.(10分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
画出图形,利用平行四边形的性质解答即可.【题目详解】解:如图:∵在▱ABCD中,C(3,1),∴A(-3,-1),∴B(-4,1),∴D(4,-1);故选:A.【题目点拨】本题考查平行四边形的性质,解题的关键是利用平行四边形的性质解答.2、A【解题分析】
分式即形式,且分母中要有字母,且分母不能为0.【题目详解】本题中只有第五个式子为分式,所以答案选择A项.【题目点拨】本题考查了分式的概念,熟悉理解定义是解决本题的关键.3、B【解题分析】
几何变换.根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.【题目详解】解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,∴两点关于y轴对称,故选:B.【题目点拨】本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.4、A【解题分析】
先把方程化为一般形式,然后可得二次项系数,一次项系数及常数项.【题目详解】解:把方程转化为一般形式得:x2−3x+1=0,∴二次项系数,一次项系数和常数项分别是1,−3,1.故选:A.【题目点拨】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5、C【解题分析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【题目详解】解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.【题目点拨】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.6、C【解题分析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.7、D【解题分析】
根据分式的计算法则,依次计算各选项后即可进行判断.【题目详解】A选项:3xyB选项:1a+bC选项:2aD选项:a2故选:D.【题目点拨】查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.8、A【解题分析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.9、D【解题分析】
根据分式为零的条件,即可完成解答.【题目详解】解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;故答案为D.【题目点拨】本题考查了分式为0的条件,即分子为零,分母不为0.10、D【解题分析】
本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【题目详解】由勾股定理可知,∵OB=,∴这个点表示的实数是.故选D.【题目点拨】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB的长.二、填空题(每小题3分,共24分)11、x≠1【解题分析】试题分析:分式有意义,分母不等于零.解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.考点:分式有意义的条件.12、【解题分析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.【题目详解】∵关于原点的对称两个点坐标符号相反,∴点关于原点的对称点坐标为,故答案为:.【题目点拨】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.13、1.【解题分析】
根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【题目详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【题目点拨】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.14、(0,)【解题分析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;【题目详解】解:作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;∵A的坐标为(﹣4,5),D是OB的中点,∴D(﹣2,0),由对称可知A'(4,5),设A'D的直线解析式为y=kx+b,∴,∴,∴,∴E(0,);故答案为(0,);【题目点拨】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.15、1【解题分析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【题目详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【题目点拨】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.16、且【解题分析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.17、三【解题分析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.18、1【解题分析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【题目详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.【题目点拨】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.三、解答题(共66分)19、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.【解题分析】
(1)根据乙五次成绩,先求平均数,再求方差即可,(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,(3)选择成绩高且稳定的人去参加即可.【题目详解】(1)乙==84,S2乙=[(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104(2)∵甲的方差>乙的方差∴成绩比较稳定的同学是乙,甲的优秀率=×100%=40%乙的优秀率=×100%=80%(3)我认为选乙参加比较合适,因为乙的成绩平均分和优秀率都比甲高,且比甲稳定,因此选乙参加比赛比较合适.【题目点拨】本题考查了简单的数据分析,包括求平均数,方差,优秀率,属于简单题,熟悉计算方法和理解现实含义是解题关键.20、(1)FC=3;(2)EF的长为5.【解题分析】
(1)由折叠性质可得AF=AD,由勾股定理可求出BF的值,再由FC=BC-BF求解即可;(2)由题意得EF=DE,设DE的长为x,则EC的长为(9-x)cm,在Rt△EFC中,由勾股定理即可求得EF的值.【题目详解】解:(1)∵矩形对边相等,∴AD=BC=15∵折叠长方形的一边AD,点D落在BC边上的点F处∴AF=AD=15,在Rt△ABF中,由勾股定理得,∴FC=BC·BF=15-12=3(2)折叠长方形的一边AD,点D落在BC边上的点F处∴EF=DE设DE=x,则EC=9·x,在Rt△EFC中,由勾股定理得,即解得x=5即EF的长为5。【题目点拨】本题主要考查了折叠问题,解题的关键是熟记折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21、(1)见解析;(2)当△ABC满足∠ACB=90°时,四边形AECF是正方形,见解析.【解题分析】
(1)求出∠ECF=90°=∠E=∠F,即可推出答案;
(2)∠ACB=90°,推出∠ACE=∠EAC=45°,AE=CE即可.【题目详解】(1)证明:∵CE、CF分别是△ABC的内、外角平分线,∴∠ACE=12∠ACB∴∠ACE+∠ACF=12(∠ACB+∠ACD)=∴∠E=∠F=90°,∴四边形AECF是矩形.(2)解:当△ABC满足∠ACB=90°时,四边形AECF是正方形.理由:∵∠ACE=∴∠EAC=∴∠ACE=∠EAC.∴AE=CE.∵四边形AECF是矩形,∴四边形AECF是正方形.故答案为:(1)见解析;(2)当△ABC满足∠ACB=90°时,四边形AECF是正方形,见解析.【题目点拨】本题考查对矩形和正方形的判定的理解和掌握,能求出四边形AECF是矩形是解题的关键.22、(1)证明见解析;(2);(3)DF⊥CE;证明见解析.【解题分析】
(1)先判断出∠AED=∠BFA=90°,再判断出∠BAF=∠ADE,进而利用“角角边”证明△AFB和△DEA全等,即可得出结论;(2)先求出AG,再判断出△ABF∽△AGB,得出比例式即可得出结论;(3)先判断出AD=CD,然后利用“边角边”证明△FAD和△EDC全等,得出∠ADF=∠DCE,即可得出结论.【题目详解】解:(1)∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠BFA=90°,∵四边形ABCD是正方形,∴AB=AD且∠BAD=∠ADC=90°,∴∠BAF+∠EAD=90°,∵∠EAD+∠ADE=90°,∴∠BAF=∠ADE,在△AFB和△DEA中,,∴△AFB≌△DEA(AAS),∴AF=DE;(2)在Rt△ABG中,AB=4,BG=3,根据勾股定理得,AG=5,∵BF⊥AG,∴∠AFB=∠ABG=90°,∵∠BAF=∠GAB,∴△ABF∽△AGB,∴,即,∴AF=;(3)DF⊥CE,理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,∴∠FAD=∠EDC,∵△AFB≌△DEA,∴AF=DE,又∵四边形ABCD是正方形,∴AD=CD,在△FAD和△EDC中,,∴△FAD≌△EDC(SAS),∴∠ADF=∠DCE,∵∠ADF+∠CDF=∠ADC=90°,∴∠DCE+∠CDF=90°,∴DF⊥CE.【题目点拨】本题是四边形综合题,涉及了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相关的性质与定理是解本题的关键.23、(1)60,0.2;(2)见解析;(3)在之间;(1)【解题分析】
(1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;(2)根据a的值补图即可;(3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;(1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.【题目详解】(1)调查总人数为(人)则,故答案为:60,0.2.(2)如图所示,(3)调查总人数为200人,由表可知中位数在之间,∴小芳同学的视力在之间(1)视力大于等于1.9的学生人数为60+10=70人,∴视力正常的人数占被调查人数的百分比是:【题目点拨】本题考查读频数直方图和利用统计图获取信息,理解统计表与直方图的关系,掌握中位数的定义是解题的关键.24、(1);(2);(3)BP=或3或.【解题分析】
(1)先根据题意推出△ABE是等腰直角三角形,再根据勾股定理计算即可.(2)首先要推出△CPQ是等腰直角三角形,再根据已知推出各边的长度,然后相加即可.(3)首先证明△BPE∽△CQP,然后分三种情况讨论,分别求解,即可解决问题.【题目详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,∵BE=CD=3,∴AB=BE=3,又∵∠A=45°,∴∠BEA=∠A=45°,∠ABE=90°,根据勾股定理得AE==;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C=45°,又∵四边形ABPE是平行四边形,∴BP∥AB,且AE=BP,∴BP∥CD,∴ED=CP=,∵∠EPQ=45°,∴∠PQC=∠EPQ=45°,∴∠PQC=∠C=45°,∠QPC=90°,∴CP=PQ=,QC=2,∴△CPQ的周长=2+2;(3)解:如图,作BH⊥AE于H,连接BE.∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=AE+ED=,∠A=∠C=45°,∴AH=BH=,HE=AD-AH-DE=∴BH=EH,∴∠EBH=∠HEB=∠EBC=45°,∴∠EBP=∠C=45°,∵∠BPQ=∠EPB+∠EPQ=∠C+∠PQC,∠EPQ=∠C,∴∠EPB=∠PQC,∴△BPE∽△CQP.①当QP=QC时,则BP=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年K2教育中STEM课程实施与效果评估:创新教育模式
- 结肠造瘘术后并发症及防治策略2025
- 小升初六年级数学下册常考易考知识点课件《第六单元第3讲:因数与倍数》人教版
- 低空经济八大应用场景与实践案例解析方案
- 大数据背景下高职院校电子商务专业课教学创新研究
- 华为体验店培训材料:云服务
- 2024年油气水输送管材专用料资金筹措计划书代可行性研究报告
- 山东省菏泽市巨野县2024-2025学年八年级下学期期中生物试题 (含答案)
- 现场管理试题及答案
- 物理必修一试题及答案
- 法律文书写作能力测试题库及解答分析
- 2025合作合同范本:两人合伙协议书模板
- 外卖骑手劳务合同协议书
- T/CAMIR 002-2022企业技术创新体系建设、管理与服务要求
- DB31/T 595-2021冷库单位产品能源消耗指标
- 第五章 SPSS基本统计分析课件
- 2025年计算机Photoshop操作实务的试题及答案
- 2025时事热点政治题及参考答案(满分必刷)
- GB/T 23453-2025天然石灰石建筑板材
- 2024-2030全球WiFi 6移动热点行业调研及趋势分析报告
- 砌砖理论考试题及答案
评论
0/150
提交评论