版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省琼海市数学八下期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,中,于点,于点,,,.则等于()A. B. C. D.2.已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有()A.2018个 B.2017个 C.4028个 D.4036个3.下列给出的四个点中,在函数y=2x﹣3图象上的是()A.(1,﹣1)B.(0,﹣2)C.(2,﹣1)D.(﹣1,6)4.方程x(x+1)=x+1的解是()A.x1=0,x2=-1B.x=1C.x1=x2=1D.x1=1,x2=-15.在△ABC中,AC9,BC12,AB15,则AB边上的高是()A.365 B.1225 C.96.以下方程中,一定是一元二次方程的是A. B.C. D.7.一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm9.将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为()A. B. C. D.10.正十边形的每一个内角的度数为()A.120∘ B.135∘ C.144二、填空题(每小题3分,共24分)11.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.12.在直角坐标系中,直线与轴交于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,…,则等边的边长是______.13.如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.14.某果农2014年的年收入为5万元,由于党的惠农政策的落实,2016年年收入增加到7.2万元,若平均每年的增长率是x,则x=_____.15.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC=.16.函数中,自变量的取值范围是__________.17.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.18.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;三、解答题(共66分)19.(10分)如图,以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接BE、DF.(1)当四边形ABCD为正方形时(如图1),则线段BE与DF的数量关系是.(2)当四边形ABCD为平行四边形时(如图2),问(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.20.(6分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=6cm,∠BAO=30°,点F为AB的中点.(1)求OF的长度;(2)求AC的长.21.(6分)如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.22.(8分)已知:在中,对角线、交于点,过点的直线交于点,交于点.求证:,.23.(8分)某草莓种植大户,今年从草莓上市到销售完需要20天,售价为11元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=11时,y=6.1.(1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)24.(8分)如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.25.(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.26.(10分)如图,已知菱形的对角线相交于点,延长至点,使,连结.求证:.当时,四边形为菱形吗?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
由平行四边形的性质得出CD=AB=9,得出S▱ABCD=BC•AE=CD•AF,即可得出结果.【题目详解】∵四边形ABCD是平行四边形,∴CD=AB=9,∵AE⊥BC于点E,AF⊥CD于点F,AF=12,AE=8,∴S▱ABCD=BC•AE=CD•AF,即BC×8=9×12,解得:BC=;故选:B.【题目点拨】此题考查了平行四边形的性质以及平行四边形的面积公式运用,此题难度适中,注意掌握方程思想与数形结合思想的应用.2、D【解题分析】
写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.【题目详解】第1,2个图形各有4个直角三角形;第3,4个图形各有8个直角三角形;第5,6个图形各有12个直角三角形……第2017,2018个图形各有4036个直角三角形,故选:D.【题目点拨】本题主要考查了中点四边形、图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键.3、A【解题分析】
把点的坐标代入解析式,若左边等于右边,则在图象上.【题目详解】各个点的坐标中,只有A(1,-1)能是等式成立,所以,在函数y=2x﹣3图象上的是(1,﹣1).故选:A【题目点拨】本题考核知识点:函数图象上的点.解题关键点:理解函数图象上的点的意义.4、D【解题分析】【分析】移项后,利用因式分解法进行求解即可得.【题目详解】x(x+1)=x+1,x(x+1)-(x+1)=0,(x+1)(x-1)=0,x1=1,x2=-1,故选D.【题目点拨】本题考查了解一元二次方程,根据方程的特点熟练选取恰当的方法进行求解是关键.5、A【解题分析】
首先由题目所给条件判断△ABC是直角三角形,再按照面积法求解即可.【题目详解】解:∵AC2+B∴AC∴△ABC是直角三角形且∠C=90∴由直角三角形面积的计算方法S=12AC·BC=12故选A.【题目点拨】本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.6、B【解题分析】
根据一元二次方程的定义依次判断即可.【题目详解】解:A、是二元一次方程,故选项A不符合题意;B、是一元二次方程,故选项B符合题意;C、m=﹣1时是一元一次方程,故选项C不符合题意;D、化简后为x+4=0,是一元一次方程,故选项D不符合题意;故选:B.【题目点拨】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.7、C【解题分析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像8、A【解题分析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.9、D【解题分析】
解:∵折叠
∴∠DAF=∠FAC,AD=AO,BE=EO,
∵AECF是菱形
∴∠FAC=∠CAB,AOE=90°
∴∠DAF=∠FAC=∠CAB
∵DABC是矩形
∴∠DAB=90°,AD=BC
∴∠DAF+∠FAC+∠CAB=90°
∴∠DAF=∠FAC=∠CAB=30°
∴AE=2OE=2BE
∵AB=AE+BE=3
∴AE=2,BE=1
∴在Rt△AEO中,AO==AD
∴BC=
故选D.10、C【解题分析】
利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【题目详解】解:∵一个十边形的每个外角都相等,
∴十边形的一个外角为360÷10=36°.
∴每个内角的度数为180°-36°=144°;
故选:C.【题目点拨】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.二、填空题(每小题3分,共24分)11、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.12、【解题分析】
先从特殊得到一般探究规律后,利用规律解决问题即可;【题目详解】∵直线l:y=x-与x轴交于点B1
∴B1(1,0),OB1=1,△OA1B1的边长为1;
∵直线y=x-与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22;
由此可得,△AnBn+1An+1的边长是2n,
∴△A2018B2019A2019的边长是1.
故答案为1.【题目点拨】考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.13、1.【解题分析】
利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.【题目详解】∵EF是△DBC的中位线,∴BC=2EF=1,∵四边形ABCD是平行四边形,∴AD=BC=1,故答案为1.【题目点拨】此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度14、20%.【解题分析】
本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.【题目详解】解:根据题意,得,即.解得:,(不合题意,舍去)故答案为20%.【题目点拨】本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.15、1+【解题分析】分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.故答案为.点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.16、x≥0且x≠1【解题分析】
根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【题目详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17、2【解题分析】
设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.【题目详解】解:设D(m,),则P(2m,),作PH⊥AB于H.故答案为:2【题目点拨】本题考核知识点:反比例函数的图象、正方形性质.解题关键点:利用参数构建方程解决问题.18、8【解题分析】
∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=BC,即△DOE的周长=△BCD的周长,∴△DOE的周长=△DAB的周长.∴△DOE的周长=×16=8cm.三、解答题(共66分)19、(1)BE=DF(或相等);(2)成立.证明见解析.【解题分析】
(1)根据正方形的性质和等边三角形性质得:AB=AD,∠BAD=90°,AF=AB,AE=AD,∠BAF=∠DAE=60°,再根据全等三角形判定和性质即可.(2)先利用平行四边形性质和等边三角形性质,再运用全等三角形判定和性质即可.【题目详解】解:(1)BE=DF(或相等)如图1,∵四边形ABCD为正方形∴AB=AD,∠BAD=90°∵△ABF、△ADE都是等边三角形∴AF=AB,AE=AD,∠BAF=∠DAE=60°∴∠BAE=∠BAD+∠DAE=150°,∠DAF=∠BAD+∠BAF=150°∴∠BAE=∠DAF∵AB=AF=AE=AD∴△ABE≌△AFD(SAS)∴BE=DF故答案为BE=DF或相等;(2)成立.证明:如图2,∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE.在△AFD和△ABE中,,∴△AFD≌△ABE(SAS),∴BE=DF.【题目点拨】本题考查了正方形、平行四边形、等边三角形、全等三角形的判定与性质;解题时要熟练掌握和运用所学性质定理和判定定理.20、(1);(2).【解题分析】分析:(1)由四边形ABCD是菱形,对角线AC与BD相交于O,由点F为AB的中点,得到OF=AB,即可得到结论;(2)在Rt△AOB中,由30°角所对直角边等于斜边的一半,得到OB的长,然后由勾股定理求得OA的长,继而求得AC的长.详解:(1)∵ABCD是菱形,∴AC⊥BD,在RtΔAOB中,OF为斜边AB边上的中线,∴OF=AB=3cm;(2)在Rt△AOB中,∠BAO=30°,∴OB=AB=3,由勾股定理得:OA==3,∴AC=OA=6.点睛:本题考查了菱形的性质、含30°角的直角三角形以及勾股定理.熟练掌握相关性质和定理是解题的关键.21、停靠站P到车站N的距离是【解题分析】【分析】连接PM,则有PM=PN,在Rt△AMN中根据勾股定理可求出AN的长,设NP为x,则MP=NP=x,AP=-x,在Rt△AMP中,由勾股定理求出x的值即可得.【题目详解】连接PM,则有PM=PN,在Rt△AMN中,∠MAN=90°,MN=2,AM=1,∴AN=,设NP为x,则MP=NP=x,AP=-x,在Rt△AMP中,∠MAP=90°,由勾股定理有:MP2=AP2+AM2,∴12+(-x)2=x2,∴x=,所以,停靠站P到车站N的距离是.【题目点拨】本题考查了勾股定理的应用,正确添加辅助线、熟练应用勾股定理是解题的关键.22、证明见解析.【解题分析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.【题目详解】证明:∵四边形ABCD为平行四边形,且对角线AC和BD交于点O,∴,,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴△AOE△COF(ASA),∴OE=OF,AE=CF.【题目点拨】本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.23、(1)y=-0.1x+8(0<x≤20且x为整数);(2)第20天每千克的利润最大,最大利润是9元/千克.【解题分析】
(1)根据题意和当x=10时,y=7,当x=11时,y=6.1,可以求得一次函数的解析式及自变量x的取值范围;(2)根据题意,可以得到w与x的函数关系式,再根据一次函数的性质和(1)中x的取值范围即可解答本题.【题目详解】解:(1)设成本y(元/千克)与第x天的函数关系式是y=kx+b,,得,即成本y(元/千克)与第x天的函数关系式是y=-0.1x+8(0<x≤20且x为整数);(2)w=11-(-0.1x+8)=0.1x+7,∵0<x≤20且x为整数,∴当x=20时,w取得最大值,此时w=0.1×20+7=9,答:第20天每千克的利润w(元)最大,最大利润是9元/千克.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24、(1),(2)见解析.【解题分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度财务信息系统集成合同3篇
- 2024石子深加工技术研发与应用合同3篇
- 2024玩具乐园设备采购及租赁服务合同3篇
- 2024版影视作品版权转让与授权播放合同
- 2025年松树造林项目采购合同3篇
- 二零二五版船舶光租及船舶安全管理体系合同3篇
- 二零二五年度安置房项目公共设施维护合同3篇
- 2025年度淋浴房绿色环保材料采购与安装服务合同4篇
- 2025年度铝材贸易结算与风险管理合同4篇
- 二零二五年度跨境电商进口采购合同3篇
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
- 主管部门审核意见三篇
- 初中数学校本教材(完整版)
- 父母教育方式对幼儿社会性发展影响的研究
- 新课标人教版数学三年级上册第八单元《分数的初步认识》教材解读
- (人教版2019)数学必修第一册 第三章 函数的概念与性质 复习课件
- 重庆市铜梁区2024届数学八上期末检测试题含解析
评论
0/150
提交评论