




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省潍坊市临朐数学八下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,直线y=k1x与直线y=k2x+b相交于点(1,﹣1),则不等式k1x<k2x+b的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣12.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()。A.60° B.90° C.120° D.45°3.八年级甲、乙、丙三个班的学生人数相同,上期期末体育成绩的平均分相同,三个班上期期末体育成绩的方差分别是:S甲2=6.4,A.甲班 B.乙班 C.丙班 D.上哪个班都一样4.下列变形中,正确的是()A. B.C. D.5.一次函数y=kx-(2-b)的图像如图所示,则k和b的取值范围是()A.k>0,b>2 B.k>0,b<2C.k<0,b>2 D.k<0,b<26.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数7.在正方形中,是边上一点,若,且点与点不重合,则的长可以是()A.3 B.4 C.5 D.68.如图,直线的图象如图所示.下列结论中,正确的是()A. B.方程的解为;C. D.若点A(1,m)、B(3,n)在该直线图象上,则.9.在△ABC中,AB=,BC=,AC=,则()A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B10.正方形的一个内角度数是A. B. C. D.11.如果一个三角形三条边的长分别是7,24,25,则这个三角形的最大内角的度数是()A.30° B.45° C.60° D.90°12.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C. D.4或二、填空题(每题4分,共24分)13.如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.14.如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)15.如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________度16.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)17.如图,矩形ABCD中,E是AD中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于F,若AB=6,BC=,则CF的长为_______18.如图,∠MON=∠ACB=90°,AC=BC,AB=5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.三、解答题(共78分)19.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上.(1)在图中直接画出O点的位置;(2)若以O点为平面直角坐标系的原点,线段AD所在的直线为y轴,过点O垂直AD的直线为x轴,此时点B的坐标为(﹣2,2),请你在图上建立平面直角坐标系,并回答下面的问题:将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1,并直接写出点B1的坐标.20.(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.21.(8分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.22.(10分)作图题.小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).(1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);(2)写出点A1,E1的坐标.23.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.24.(10分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件)售价(万元/件)甲1214.5乙810两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.(1)与的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?25.(12分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有()A.4个 B.3个 C.2个 D.1个26.“垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。(1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;(2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
由图象得到直线y=k1x与直线y=k2x+b相交于点(1,﹣1),观察直线y=k1x落在直线y=k2x+b的下方对应的x的取值即为所求.【题目详解】.解:∵直线y=k1x与直线y=k2x+b相交于点(1,﹣1),∴当x>1时,k1x<k2x+b,即k1x<k2x+b的解集为x>1,故选:A.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2、A【解题分析】
首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【题目详解】设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故选A.【题目点拨】此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.3、B【解题分析】
先比较三个班方差的大小,然后根据方差的意义进行判断.【题目详解】解:∵S2甲=6.4,S2乙=5.6,S2丙=7.1,∴S2乙<S2甲<S2丙,∴乙班成绩最稳定,杜老师更喜欢上课的班是乙班.故选:B.【题目点拨】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【解题分析】
根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【题目详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【题目点拨】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.5、B【解题分析】
根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.【题目详解】∵一次函数y=kx-(1-b)的图象经过一、三、四象限,∴k>0,-(1-b)<0,解得b<1.故选B.【题目点拨】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.6、D【解题分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【题目详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7、B【解题分析】
且根据E为BC边上一点(E与点B不重合),可得当E与点C重合时AE最长,求出AC即可得出答案.【题目详解】解:∵四边形ABCD为正方形,∴AB=BC=3,AC=,又∵E为BC边上一点,E与点B不重合,∴当E与点C重合时AE最长,则3<AE≤,故选:B.【题目点拨】本题考查全正方形的性质和勾股定理,求出当E与点C重合时AE最长是解题的关键.8、B【解题分析】
根据函数图象可直接确定k、b的符号判断A、C,根据图象与x轴的交点坐标判断选项B,根据函数性质判断选项D.【题目详解】由图象得:k<0,b>0,∴A、C都错误;∵图象与x轴交于点(1,0),∴方程的解为,故B正确;∵k<0,∴y随着x的增大而减小,由1<3得m>n,故D错误,故选:B.【题目点拨】此题考查一次函数的图象,一次函数的性质,正确理解图象得到对应的信息是解题的关键.9、A【解题分析】试题解析:∵在△ABC中,AB=,BC=,AC=,∴∴∠A=90°故选A.10、D【解题分析】
正方形的内角和为,正方形内角相等,.【题目详解】解:根据多边形内角和公式:可得:正方形内角和,正方形四个内角相等正方形一个内角度数.故选:.【题目点拨】本题考查了多边形内角和定理、正多边形每个内角都相等的性质应用,是一道基础几何计算题.11、D【解题分析】
根据勾股定理逆定理可得此三角形是直角三角形,进而可得答案.【题目详解】解:∵72+242=252,∴此三角形是直角三角形,∴这个三角形的最大内角是90°,故选D.【题目点拨】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12、D【解题分析】试题解析:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=1.故选D.二、填空题(每题4分,共24分)13、.【解题分析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.【题目详解】如图,作AE⊥OB于E,A′H⊥OB于H.∵A(1,),∴OE=1,AE=,∴OA==2,∵△OAB是等边三角形,∴∠AOB=60°,∵∠AOA′=15°,∴∠A′OH=60°﹣15°=45°,∵OA′=OA=2,H⊥OH,∴A′H=OH=,∴(,),故答案为:(,).【题目点拨】此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.14、【解题分析】
左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得【题目详解】解:,故答案为:.【题目点拨】本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.15、72或【解题分析】分析:分两种情况讨论,分别构建方程即可解决问题.详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;若EC=EB时,则有∠EBC=∠C=2x.∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,②EA=EB时,同法可得∠C=72°.综上所述:∠C=72°或.故答案为72°或.点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16、②①④⑤③【解题分析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.17、2【解题分析】分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG;然后利用“HL”证明△EDF和△EGF全等,根据全等三角形的对应边相等可证得DF=GF;设DF=x,接下来表示出FC、BF,在Rt△BCF中,利用勾股定理列式进行计算即可得解.详解:∵E是AD的中点,∴AE=DE.∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG.∵在矩形ABCD中,∠A=∠D=90°,∴∠EGF=90°.∵在Rt△EDF和Rt△EGF中,ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF,∴DF=FG.设CF=x,则DF=6-x,BF=12-x.在Rt△BCF中,()2+x2=(12-x)2,解得x=2.∴CF=2.故答案为:2.点睛:本题考查了矩形的性质,勾股定理
,
翻折变换(折叠问题),全等三角形的判定与性质.根据“HL”证明Rt△EDF≌Rt△EGF是解答本题的关键.18、.【解题分析】
如图,取AC的中点E,连接OE、DE、OD,由OD≤OE+DE,可得当O、D、E三点共线时,点D到点O的距离最大,再根据已知条件,结合三角形的中位线定理及直角三角形斜边中线的性质即可求得OD的最大值.【题目详解】如图,取AC的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,∵∠ACB=90°,AC=BC,AB=5,∴AC=BC=∵点E为AC的中点,点D为AB的中点,∴DE为△ABC的中位线,∴DE=BC=;在Rt△ABC中,点E为AC的中点,∴OE=AC=;∴OD的最大值为:OD+OE=.故答案为:.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质、三角形的中位线定理及勾股定理等知识点,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)图详见解析,点B1的坐标为(2,0).【解题分析】
(1)利用BF、AD、CE,它们的交点为O点;
(2)根据题意建立直角坐标系,利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【题目详解】(1)如图,点O为所作;(2)如图,△A1B1C1,为所作,点B1的坐标为(2,0).【题目点拨】本题考查了中心对称、建立平面直角坐标系及图形的平移,掌握成中心对称的图形的性质及平移的性质是关键.20、(1)A(4,3);(2)28.【解题分析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.【题目详解】解:(1)由题意得:,解得,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.21、(1)(0,52);(2【解题分析】
(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.【题目详解】(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则2k+b=1-2k+b=4解得,k=-3∴设直线AB的解析式为:y=﹣34x+5∴点C的坐标为(0,52(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,则OA2+OB2=AB2,∴△OAB是直角三角形.【题目点拨】本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.22、(1)见解析;(2)A1(-5,-4),E1(-4,2).【解题分析】
(1)根据网格结构找出点O、A、B、C、D、E关于原点O的对称点O1、A1、B1、C1、D1、E1的位置,然后顺次连接即可;(2)根据平面直角坐标系中A1,E1的位置,直接写出点A1,E1的坐标即可.【题目详解】(1)如图所示:(2)由题意得:A1(-5,-4),E1(-4,2).【题目点拨】本题主要考查中心对称变换,掌握网格结构准确找出点O、A、B、C、D、E关于原点O的对称点的位置是解题的关键.23、(1)200;(2)补图见解析;(3)12;(4)300人.【解题分析】
(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)结合扇形图,分别求出人数,再画图;(3)用社科类百分比×2500可得.【题目详解】解:(1)200,126;(2)(3)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300(人)【题目点拨】本题考核知识点:数据的整理,用样本估计总体.解题关键点:从统计图获取信息.24、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元【解题分析】
(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;(2)根据资金不多于20万元列出不等式组;(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.【题目详解】解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案为:w=0.5x+40;(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,故该公司最多购进10台甲种商品;(3)∵对于函数w=0.5x+40,w随x的增大而增大,∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.【题目点拨】此题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语(广州卷)2025年中考考前押题最后一卷
- 环保材料在饮料设备中的应用与循环利用路径-洞察阐释
- 互助性养老服务在农村的可行性研究
- 医院能源托管项目可行性研究报告
- 2025至2030年中国电串烤式烤炉行业投资前景及策略咨询报告
- 数据驱动下的医疗资源分配优化策略
- 2025至2030年中国浴块行业投资前景及策略咨询报告
- 2025至2030年中国沙发坐垫带行业投资前景及策略咨询报告
- 2025至2030年中国毛尖染色毛皮行业投资前景及策略咨询报告
- 2025至2030年中国染色弹力帆布行业投资前景及策略咨询报告
- 2024中国国新基金管理有限公司相关岗位招聘7人笔试参考题库附带答案详解
- 光伏组件清洗合同
- 作风建设学习教育心得体会:在深入学习中校准思想坐标持续转变工作作风(3篇)
- 人体解剖学题库(含答案)
- 2025年浙江省新能源投资集团股份有限公司招聘笔试参考题库附带答案详解
- 传统加油站行业痛点分析与数字化解决方案
- 法人授权委托书深圳标准版
- 2025年新高考历史预测模拟试卷山东卷(含答案解析)
- 智创上合-专利应用与保护知到课后答案智慧树章节测试答案2025年春青岛工学院
- 2025年全国中小学校科普知识竞赛题库及答案(共80题)
- 非营利组织财务管理制度与流程
评论
0/150
提交评论