湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题含解析_第1页
湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题含解析_第2页
湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题含解析_第3页
湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题含解析_第4页
湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省襄阳市枣阳市蔡阳中学2024届数学八年级第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)2.已知一次函数.若随的增大而增大,则的取值范围是()A. B. C. D.3.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和194.反比例函数图象上有,两点,则与的大小关系是()A. B. C. D.不确定5.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.46.如图,菱形ABCD中,对角线BD与AC交于点O,BD=8cm,AC=6cm,过点O作OH⊥CB于点H,则OH的长为()A.5cm B.cmC.cm D.cm7.将一元二次方程-6x-5=0化成=b的形式,则b等于()A.4 B.-4 C.14 D.-148.如图,在中,,,下列选项正确的是()A. B. C. D.9.下列变形中,正确的是()A. B.C. D.10.计算=()A. B. C. D.11.已知点都在直线y=3x+b上,则的值的大小关系是()A. B. C. D.12.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A. B. C.1 D.1﹣二、填空题(每题4分,共24分)13.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.14.如图,等腰三角形中,,是底边上的高,则AD=________________.15.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______16.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.17.已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQcm时,点C到PQ的距离为______.18.如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.三、解答题(共78分)19.(8分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,在扇形统计图中分数为7的圆心角度数为度.(2)补全条形统计图,各组得分的中位数是分,众数是分.(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?20.(8分)已知△ABC中,∠ACB=90°,∠CAB=30°,以AC,AB为边向外作等边三角形ACD和等边三角形ABE,点F在AB上,且到AE,BE的距离相等.(1)用尺规作出点F;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接EF,DF,证明四边形ADFE为平行四边形.21.(8分)选择合适的方法解一元二次方程:22.(10分)(1)已知一组数据8,3,m,2的众数是3,求出这组数据的平均数;(2)解方程:.23.(10分)已知一次函数图像过点P(0,6),且平行于直线y=-2x(1)求该一次函数的解析式(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。24.(10分)关于的方程.(1)当时,求该方程的解;(2)若方程有增根,求的值.25.(12分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?26.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【题目详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【题目点拨】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.2、B【解题分析】

∵随的增大而增大,∴,,故选B.3、B【解题分析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【题目详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【题目点拨】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.4、B【解题分析】

根据反比例函数解析式,判断出反比例函数的增减性,根据增减性判断与的大小即可.【题目详解】由反比例函数的k的值为负数,∴各象限内,y随x的增大而增大,∵−2>−3,∴>,故选B【题目点拨】此题考查反比例函数图象上点的坐标特征,解题关键在于判断出反比例函数的增减性5、D【解题分析】

首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.【题目详解】解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.故选:D.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6、C【解题分析】

根据菱形的对角线互相垂直平分求出OB、OC,再利用勾股定理列式求出BC,然后根据△BOC的面积列式计算即可得解.【题目详解】解:∵四边形ABCD是菱形,

∴AC⊥BD,在Rt△BOC中,由勾股定理得,∵OH⊥BC,∴∴故选C.【题目点拨】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC的面积列出方程.7、C【解题分析】

解:因为x2-6x-5=0所以x2-6x=5,配方得x2-6x+9=5+9,所以,所以b=14,故选C.【题目点拨】本题考查配方法,掌握配方法步骤正确计算是解题关键.8、A【解题分析】

通过证明△ADE∽△ABC,由相似三角形的性质可求解.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC∴故选:A.【题目点拨】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.9、D【解题分析】

根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【题目详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【题目点拨】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.10、A【解题分析】

直接利用二次根式的性质化简得出答案.【题目详解】解:原式==.故选:A.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.11、C【解题分析】

先根据直线y=1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【题目详解】解:∵直线y=1x+b,k=1>0,

∴y随x的增大而增大,

又∵-2<-1<1,

∴y1<y2<y1.

故选:C.【题目点拨】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.12、A【解题分析】

过E作EF⊥DC于F,根据正方形对角线互相垂直以及角平分线的性质可得EO=EF,再由正方形的性质可得CO=AC=,继而可得EF=DF=DC-CF=1-,再根据勾股定理即可求得DE长.【题目详解】过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC-CF=1-,∴DE==-1,故选A.【题目点拨】本题考查了正方形的性质、角平分线的性质、勾股定理等知识,正确添加辅助线、熟练应用相关性质与定理进行解题是关键.二、填空题(每题4分,共24分)13、【解题分析】如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=,∴AE=3,设AF=x,则DF=6−x,GF=3+(6−x)=9−x,∴EF=,∴(9−x)²=9+x²,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF==,故答案为:.点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.14、1【解题分析】

先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【题目详解】根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=1cm.故答案为1.【题目点拨】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.15、0.4【解题分析】

根据计算仰卧起坐次数在次的频率.【题目详解】由图可知:仰卧起坐次数在次的频率.故答案为:.【题目点拨】此题考查了频率、频数的关系:.16、AC⊥BD【解题分析】

对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.【题目详解】∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴当AC⊥BD时,四边形ABCD是正方形,故答案为:AC⊥BD.【题目点拨】此题考查正方形的判定定理,熟记定理并运用解题是关键.17、或.【解题分析】

如图1,当P在AB上,Q在AD上时,根据题意得到,连接AC,根据正方形的性质得到,,求得,推出是等腰直角三角形,得到,根据等腰直角三角形的性质即可得到结论,如图2,当P在BC上,Q在DC上时,则,同理,.【题目详解】∵点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,∴如图1,当P在AB上,Q在AD上时,则AQ=AP,连接AC,∵四边形ABCD是正方形,∴∠DAB=90°,AC⊥BD,∴ACAB=4.∵AQ=AP,∴△APQ是等腰直角三角形,∴∠AQP=∠QAM=45°,∴AM⊥AC,∵PQcm,∴AMPQ,∴CM=AC=AM;如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM,综上所述:点C到PQ的距离为或,故答案为:或.【题目点拨】本题考查了正方形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.18、(-,0)【解题分析】

先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.【题目详解】∵菱形的两个顶点坐标为,,∴对角线的交点D的坐标是(2,2),∴,将菱形绕点以每秒的速度逆时针旋转,旋转1次后坐标是(0,),旋转2次后坐标是(-2,2),旋转3次后坐标是(-,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-),旋转6次后坐标是(2,-2),旋转7次后坐标是(,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,,由此得到点D旋转后的坐标是8次一个循环,∵,∴第秒时,菱形两对角线交点的坐标为(-,0)故答案为:(-,0).【题目点拨】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.三、解答题(共78分)19、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.【解题分析】

(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【题目详解】(1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),m%=×100%=25%,×360°=54°,故答案为:25,54;(2)8分这一组的组数为5,如图所示:各组得分的中位数是(7+6)=6.5,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,×120=12(组),∴该展演活动共产生了12个一等奖.【题目点拨】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.20、(1)详见解析;(2)详见解析【解题分析】

(1)由“点F在AB上,且到AE,BE的距离相等”可知作∠AEB的角平分线与AB的交点即为点F;(2)先证明△ACB≌△AFE,再由全等三角形的性质得出AD∥EF,AD=EF,即可判定四边形ADFE为平行四边形.【题目详解】解:(1)如图,作∠AEB的角平分线,交AB于F点∴F为所求作的点(2)如图,连接EF,DF,∵△ABE和△ACD都是等边三角形,∠ACB=90°,∠CAB=30°,EF平分∠AEB,∴∠DAE=150°,∠AEF=30°,∴△ACB≌△AFE∴∠DAE+∠AEF=180°,EF=AC∴AD∥EF,AD=AC=EF∴四边形ADFE为平行四边形【题目点拨】本题考查了角平分线的尺规作图、全等三角形的判定及性质、平行四边形的判定,解题的关键张熟练掌握上述知识点.21、x1=2,x2=-1.【解题分析】

方程利用因式分解法求出解即可.【题目详解】解:分解因式得:(x-2)(x+1)=0,

可得x-2=0或x+1=0,

解得:x1=2,x2=-1.【题目点拨】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.22、(1)4;(2).【解题分析】

(1)根据众数的定义求出m,即可求出平均数;(2)根据因式分解求解即可.【题目详解】(1)解:∵一组数据8,3,,2的众数为3,∴,∴这组数据的平均数:.(2).(x+3)(x+1)=0.【题目点拨】本题考查的是平均数和解二次方程,熟练掌握众数和因式分解是解题的关键.23、(1)y=-2x+6(2)答案见解析【解题分析】

(1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;(2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系【题目详解】(1)解:∵一次函数图像过点P(0,6),且平行于直线y=-2x,∴设这个一次函数解析式为y=-2x+b∴b=6∴该一次函数解析式为y=-2x+6;(2)解:∵一次函数解析式为y=-2x+6,k=-2<0∴y随x的增大而减小;∵点A(,a)、B(2,b)在该函数图像上且,∴a>b【题目点拨】此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.24、(1)x=1;(2)k=1.【解题分析】

(1)把k=3代入方程计算即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论