2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题含解析_第1页
2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题含解析_第2页
2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题含解析_第3页
2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题含解析_第4页
2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省葫芦岛市高桥中学八年级数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.八边形的内角和为()A.180° B.360° C.1080° D.1440°2.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q3.能使分式的值为零的所有x的值是()A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=2或x=14.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是()A. B. C. D.5.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个 B.4个 C.3个 D.2个6.代数式2x,,x+,中分式有()A.1个 B.2个 C.3个 D.4个7.下列各组数中,以它们为边的三角形是直角三角形的是()A.1,2,3 B.9,16,25 C.12,15,20 D.1,2,8.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为()A.151° B.122° C.118° D.120°9.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.910.如图,为等边三角形,,、相交于点,于点,且,,则的长为()A.7 B.8 C.9 D.1011.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手

平均数(环)

9.2

9.2

9.2

9.2

方差(环2)

0.035

0.015

0.025

0.027

则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁12.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为()A.10cm2 B.12cm2 C.15cm2 D.17cm2二、填空题(每题4分,共24分)13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC=.14.如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.15.方程的解为_________.16.若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是.17.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.18.如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则PC的值为_____.三、解答题(共78分)19.(8分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?20.(8分)乙知关于的方程.(1)试说明无论取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为,试求的值.21.(8分)已知点分别在菱形的边上滑动(点不与重合),且.(1)如图1,若,求证:;(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;(3)如图3,若,请直接写出四边形的面积.22.(10分)按要求完成下列尺规作图(不写作法,保留作图痕迹)(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.23.(10分)如图,在四边形ABCD中,AD∥BC,BD⊥AD,点E,F分别是边AB,CD的中点,且DE=BF.求证:四边形ABCD是平行四边形.24.(10分)如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.25.(12分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.26.如图,直线分别与轴、轴交于点、点,与直线交于点.(1)若,请直接写出的取值范围;(2)点在直线上,且的面积为3,求点的坐标?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:根据n边形的内角和公式(n-2)×180º可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n边形的内角和公式.2、C【解题分析】

试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.【题目详解】解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,∴点P不一定在圆上.故选C.【题目点拨】考点:点与圆的位置关系;线段垂直平分线的性质.3、B【解题分析】分析:根据分式的值为0的条件:分子等于0,分母≠0,构成不等式组求解即可.详解:由题意可知:解得x=-1.故选B.点睛:此题主要考查了分式的值为0的条件,利用分式的值为0的条件:分子等于0,分母≠0,构造不等式组求解是解题关键.4、A【解题分析】

原计划每天绿化x米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【题目详解】原计划每天绿化x米,则实际每天绿化(x+10)米,由题意得,,故选A.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5、C【解题分析】

根据中心对称的概念对各小题分析判断,然后利用排除法求解.【题目详解】(1)正方形绕中心旋转能与自身重合;(2)等边三角形不能绕某点旋转与自身重合;(3)矩形绕中心旋转能与自身重合;(4)直角不能绕某个点旋转能与自身重合;(5)平行四边形绕中心旋转能与自身重合;综上所述,绕某个点旋转能与自身重合的图形有(1)(3)(5)共3个.故选:.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合.6、A【解题分析】

直接利用分式的定义分析得出答案.【题目详解】解:代数式2x,,x+,中分式有:.

故选A.【题目点拨】本题考查了分式的定义,正确把握定义是解题关键.7、D【解题分析】

根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【题目详解】解:A、∵12+22≠32,∴不能构成直角三角形,故本选项不符合题意;B、∵92+162≠252,∴不能构成直角三角形,故本选项不符合题意;C、∵122+152≠202,∴不能构成直角三角形,故本选项不符合题意;D、∵12+22=2,∴能够构成直角三角形,故本选项符合题意.故选:D.【题目点拨】点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8、B【解题分析】

根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.【题目详解】连接BO,延长AO交BC于E,∵AB=AC,AO平分∠BAC,∴AO⊥BC,AO平分BC,∴OB=OC,∵O在AB的垂直平分线上,∴AO=BO,∴AO=CO,∴∠OAC=∠OCA=∠OAD=×58°=29°,∴∠AOC=180°-2×29°=122°,故选B.【题目点拨】此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.9、D【解题分析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.10、C【解题分析】

分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.【题目详解】解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD(SAS);∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ中,BP=2PQ=8;又∵PE=1,∴AD=BE=BP+PE=1.故选:C.【题目点拨】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.11、B【解题分析】在平均数相同时方差越小则数据波动越小说明数据越稳定,12、C【解题分析】

解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,∴AC∥AC1,B1C=B1C1,∴△B1DC∽△B1A1C1,∵△B1DC与△B1A1C1的面积比为1:4,∴四边形A1DCC1的面积是△ABC的面积的,∴四边形A1DCC1的面积是:cm2,故选C二、填空题(每题4分,共24分)13、1+【解题分析】分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,

∴∠B=∠BAD,

∴BD=AD=,

∵∠C=90°,

∴CD===1,

∴BC=+1.故答案为.点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.14、90°【解题分析】

点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.【题目详解】依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,又AD∥BC,所以,∠DAB+∠CBA=180°,所以,∠DAB+∠CBA=90°,即∠EAB+∠EBA=90°,所以,∠AEB=90°.故答案为:90°.【题目点拨】本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.15、【解题分析】

此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【题目详解】∵∴∴∴∴故答案为:.【题目点拨】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.16、1【解题分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.解答:解:∵点A(2,a)关于x轴的对称点是B(b,-3),∴a=3,b=2,∴ab=1.故答案为1.17、1【解题分析】

根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.【题目详解】是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为1.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.18、1【解题分析】

根据已知首先求出MC=1,HN=2,再利用平行线分线段成比例定理得到,进而得出PH=6,所以PC=PH-CH=1.【题目详解】解:∵正方体的棱长为1,点M,N分别在CD,HE上,CM=DM,HN=2NE,

∴MC=1,HN=2,

∵DC∥EH,

∴,

∵HC=1,

∴PC=1,

∴PH=6,

∴PC=PH-CH=1.

故答案为:1.【题目点拨】本题考查了平行线分线段成比例定理等知识,根据已知得出PH的长是解决问题的关键.三、解答题(共78分)19、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.【解题分析】

(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【题目详解】(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,依题意,得:,解得:x=20,经检验,x=20是原方程的解,∴x+2=1.答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y天,依题意,得:,解得:y≥2.答:甲队至少再单独施工2天.【题目点拨】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.20、(1)详见解析;(2)2003【解题分析】

(1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=3代入方程得k2+6k=-8,代入原式计算可得.【题目详解】解:(1),无论取何值时,方程总有两个不相等的实数根;(2)因为方程有一个根为,,即【题目点拨】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.21、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.【解题分析】

(1)根据菱形的性质及已知,得到,再证,根据三角形全等的性质即可得到结论;(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;(3)根据菱形的面积公式,结合(2)的结论解答.【题目详解】解:(1)∵四边形是菱形,∴,.∵,∴,∴.∵,∴,∴.在和中,,∴,∴.(2)若与不垂直,(1)中的结论还成立证明如下:如图,作,垂足分别为点.由(1)可得,∴,在和中,,∴,∴.(3)如图,连接交于点.∵,∴为等边三角形,∵,∴,同理,,∴四边形的面积四边形的面积,由(2)得四边形的面积四边形AECF的面积∵,∴,,∴四边形的面积为,∴四边形的面积为.【题目点拨】本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.22、(1)见解析;(2)见解析【解题分析】

(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;

(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.【题目详解】解:如图①,点M即为所求;如图②,点N即为所求.①②【题目点拨】考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.关键是熟练掌握线段垂直平分线的作法.23、见解析.【解题分析】

首先根据平行线的性质可得∠DBC=∠BDA=90°,再根据直角三角形的性质可得DE=12AB,BF=12DC,然后可得AB=CD,再证明Rt△ADB≌Rt△CBD可得【题目详解】证明:∵AD∥BC,BD⊥AD,∴∠DBC=∠BDA=90°,∵在RtΔADB中,E是AB∴DE=1同理:BF=1∵DE=BF,∴AB=CD,在RtΔADB和RtAB=CD,∴RtΔADB≅∴AD=BC.∴四边形ABCD是平行四边形.【题目点拨】此题主要考查了平行四边形的判定,全等三角形的判定与性质,关键是找出证明Rt△ADB≌Rt△CBD的条件.24、△ABM的面积是700cm2.【解题分析】

过M作ME⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CM=ME,即可解答【题目详解】过M作ME⊥AB于E,∵∠C=90°,AM平分∠CAB,CM=20cm,∴CM=ME=20cm,∴△ABM的面积是×AB×ME=×70cm×20cm=700cm2.【题目点拨】此题考查角平分线的性质和三角形面积,解题关键在于利用角平分线的性质求出CM=M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论