2024届河南聚焦八年级数学第二学期期末调研模拟试题含解析_第1页
2024届河南聚焦八年级数学第二学期期末调研模拟试题含解析_第2页
2024届河南聚焦八年级数学第二学期期末调研模拟试题含解析_第3页
2024届河南聚焦八年级数学第二学期期末调研模拟试题含解析_第4页
2024届河南聚焦八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南聚焦八年级数学第二学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.设,,则与的大小关系是()A. B. C. D.2.在下列式子中,x可以取1和2的是()A. B. C. D.3.下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为()A.2022 B.4040 C.6058 D.60604.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.5.已知:在中,,求证:若用反证法来证明这个结论,可以假设A. B. C. D.6.函数与()在同一平面直角坐标系内的图象可能是()A. B. C. D.7.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.108.下列曲线中不能表示是的函数的是()A.(A) B.(B) C.(C) D.(D)9.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2 B.4 C.5 D.无数10.如图,中,是边的中点,平分于已知则的长为()A. B.C. D.11.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.12.若解分式方程产生增根,则m=()A.1 B.0 C.﹣4 D.﹣5二、填空题(每题4分,共24分)13.如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________14.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.16.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.17.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是_____.18.如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.(1)求∠ADC的度数;(2)求四边形ABCD的面积.20.(8分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;(2)求该函数图象与坐标轴围成的三角形的面积.21.(8分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.22.(10分)如图,直线l1的解析式为y=-x+4,直线l2的解析式为y=x-2,l1和l2的交点为点B.(1)直接写出点B坐标;(2)平行于y轴的直线交x轴于点M,交直线l1于E,交直线l2于F.①分别求出当x=2和x=4时EF的值.②直接写出线段EF的长y与x的函数关系式,并画出函数图像L.③在②的条件下,如果直线y=kx+b与L只有一个公共点,直接写出k的取值范围.23.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.24.(10分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?25.(12分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.26.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

通过作差法来判断A与B的大小,即可得解.【题目详解】根据已知条件,得∴故答案为B.【题目点拨】此题主要考查求差比较大小,熟练运用,即可解题.2、B【解题分析】

根据分式和二次根式有意义的条件即可求出答.【题目详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【题目点拨】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.3、D【解题分析】

仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.【题目详解】解:观察图形得:

第1个图形有3+3×1=6个三角形,

第2个图形有3+3×2=9个三角形,

第3个图形有3+3×3=12个三角形,

第n个图形有3+3n=3(n+1)个三角形,

当n=2019时,3×(2019+1)=6060,

故选D.【题目点拨】本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.4、D【解题分析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【题目详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【题目点拨】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.5、C【解题分析】

反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【题目详解】已知:在中,,求证:若用反证法来证明这个结论,可以假设,由“等角对等边”可得AB=AC,这与已知矛盾,所以故选C【题目点拨】本题考核知识点:反证法.解题关键点:理解反证法的一般步骤.6、D【解题分析】

先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【题目详解】A.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;B.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a<0,错误;C.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;D.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a>0,正确.故选D.【题目点拨】本题考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7、D【解题分析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.8、B【解题分析】分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.故选:B.点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.9、C【解题分析】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.详解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB∴∠QBH=75°,∠HQB=180-75°-75°=30°,故∠OQB=60°+30°=90°,不能再添加了.故选C.点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.10、A【解题分析】

延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【题目详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.【题目点拨】本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.11、C【解题分析】

四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【题目详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【题目点拨】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.12、D【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值.【题目详解】解:方程两边都乘,得,原方程增根为,把代入整式方程,得,故选D.【题目点拨】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.二、填空题(每题4分,共24分)13、【解题分析】

首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.【题目详解】根据题意可得AB=1,则正方形ABCD的面积为1AE=,则正方形AEBO1面积为EF=,则正方形EFBO2面积为因此可得第n个正方形面积为故答案为【题目点拨】本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.14、1【解题分析】

众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【题目详解】解:在这一组数据中1是出现次数最多的,故众数是1;故答案为1.15、1【解题分析】

首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.【题目详解】∵BC=6,BD=4,∴CD=1.∵∠C=90°,AD平分∠CAB,∴点D到AB的距离=CD=1.故答案为:1.【题目点拨】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.16、4【解题分析】

根据等边三角形的性质和含30°的直角三角形的性质解答即可.【题目详解】∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC−AE=6−2=4.故答案为4.【题目点拨】本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.17、y=1x1﹣1.【解题分析】

利用正比例函数的定义,设y=k(x1﹣1),然后把x=1,y=6代入求出k即可得到y与x的函数关系式.【题目详解】设y=k(x1﹣1),把x=1,y=6代入得:k×(11﹣1)=6,解得:k=1,所以y=1(x1﹣1),即y=1x1﹣1.故答案为y=1x1﹣1.【题目点拨】本题考查了待定系数法求函数的解析式:在利用待定系数法求函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.18、【解题分析】

连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.【题目详解】解:连接,取的中点,连,,则,,,∵,为中点∴,∵BD平分,∴BE=EG设,则,∴在中,,解得(舍),∴,,∴.【题目点拨】本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.三、解答题(共78分)19、(1)150°;(2)【解题分析】

(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【题目详解】(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+12=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.20、(1),画图形见解析;(2)【解题分析】

(1)将点代入,运用待定系数法求解即可;(2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.【题目详解】解:(1)∵点A(2,0)在函数y=kx+3的图象上,∴2k+3=0,解得k=,函数解析式为,图像如下图所示:(2)在中,令y=0,即,解得x=2,令x=0,即,解得y=3,∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,∴.【题目点拨】本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.21、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.【解题分析】

(1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.【题目详解】(1)证明:在正方形ABCD中,AD=CD,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH⊥AP,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH,∴△ADP≌△DCG,∵DP,CG为全等三角形的对应边,∴DP=CG.(2)△PQR为等腰三角形.∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知∴CQ=CG,∵∠QCE=∠GCE,CE=CE,∴△CEQ≌△CEG,即∠CQE=∠CGE,∴∠PQR=∠CGE,∵∠QPR=∠DPA,∴∠PQR=∠QPR,所以△PQR为等腰三角形.22、(1)(3,1);(2)①EF=2;②见解析.③k>2或k<-2或.k=-【解题分析】分析:(1)直接联立两个解析式求解即为点B的坐标.(2)①当x=2时,分别求出点E、F的纵坐标即可解答.当x=4时,分别求出点E、F的纵坐标即可解答.②分两种情况讨论:当x或x时,线段EF的长y与x的函数关系式.详解:(1)联立两个解析式可得y=-x+4y=x-2,解得x=3,y=1,∴点B的坐标为(3,1);(2)①如图:当x=2时,y=-x+4=2,∴E(2,2),当x=2时,y=x-2=0,∴F(2,0),∴EF=2;如图:当x=4时,y=-x+4=0,∴E(4,0),当x=4时,y=x-2=2,∴F(4,2),∴EF=2;②L:,图像如图所示:③k>2或k<-2或.k=-.点睛:本题主要考查了一次函数,结合题意熟练的运用一次函数是解题的关键.23、(1)证明见解析,(2)证明见解析【解题分析】

(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【题目详解】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.又∵E、F分别是边AB、CD的中点,∴BE=DF.∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)△BEC≌△DFA,∴CE=AF,∵E、F分别是边AB、CD的中点,∴AE=CF∴四边形AECF是平行四边形.【题目点拨】本题考查三角形全等的证明,矩形的性质和平行四边形的判定.24、(1)每台A型净水器的进价为2元,每台B型净水器的进价为1元;(2)购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【解题分析】

(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.【题目详解】(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1.经检验,x=1是原方程的解,且符合题意,∴x+300=2.答:每台A型净水器的进价为2元,每台B型净水器的进价为1元.(2)设最大利润是W元.∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:W=(1500﹣2)x+(1100﹣1)(400﹣x)=100x+3.∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤4.∵100>0,∴W随x值的增大而增大,∴当x=4时,W取得最大值,最大值为100000元.答:购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【题目点拨】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论