广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题含解析_第1页
广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题含解析_第2页
广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题含解析_第3页
广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题含解析_第4页
广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市蓬江区荷塘中学2024届八年级数学第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.要使二次根式x-3有意义,则x的取值范围是()A.x>3. B.x<3. C.x≥3. D.x≤3.2.后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有().A.2个 B.3个 C.4个 D.5个3.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°4.如图,中,,,要判定四边形是菱形,还需要添加的条件是()A.平分 B. C. D.5.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形6.如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为,则乘电梯从点到点上升的高度是()A. B. C. D.7.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)8.已知函数,不在该函数图象上的点是()A. B. C. D.9.反比例函数图象上有,两点,则与的大小关系是()A. B. C. D.不确定10.下列二次根式中是最简二次根式的为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.12.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_____.13.一组数据﹣1,0,1,2,3的方差是_____.14.如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.15.某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.16.如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.17.如图,,,,若,则的长为______.18.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.三、解答题(共66分)19.(10分)化简求值:,其中.20.(6分)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=____________°②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.21.(6分)计算:2+6-5+22.(8分)解不等式组,并把解集在数轴上表示出来.23.(8分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?24.(8分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.25.(10分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.26.(10分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:某校初二年级学生周人均阅读时间频数分布表周人均阅读时间x(小时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<81100.2758≤x<101000.25010≤x<1240b合计4001.000请根据以上信息,解答下列问题:(1)在频数分布表中a=______,b=______;(2)补全频数分布直方图;(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据二次根式的性质,被开方数大于等于0,列不等式求解.【题目详解】解:根据题意得:x-3≥0,解得,x≥3.

故选:C.【题目点拨】本题考查二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2、B【解题分析】

根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.【题目详解】解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;故选B.【题目点拨】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.3、B【解题分析】

根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【题目详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【题目点拨】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.4、A【解题分析】

当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【题目详解】解:当平分时,四边形是菱形,理由:∵,∴,∵,∴,∴,∵,,∴四边形是平行四边形,∵,∴四边形是菱形.其余选项均无法判断四边形是菱形,故选:A.【题目点拨】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、D【解题分析】

分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.【题目详解】对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.【题目点拨】考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.6、C【解题分析】

过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.【题目详解】解:过C作CM⊥AB于M,

∵∠ABC=150°,

∴∠CBM=180°-150°=30°,

在Rt△CBM中,

∵BC=10m,∠CBM=30°,

∴=sin∠CBM=sin30°=,

∴CM=BC=5m,

即从点B到点C上升的高度h是5m.

故选C.【题目点拨】本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.7、D【解题分析】

如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【题目详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【题目点拨】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.8、B【解题分析】

依次将各选项坐标的横坐标值代入函数计算,若计算结果与其纵坐标值相同,则在函数图像上,反之则不在.【题目详解】A:当时,,与其纵坐标值相同,该点在该函数图象上;B:当时,,与其纵坐标值不同,该点不在该函数图象上;C:当时,,与其纵坐标值相同,该点在该函数图象上;D:当时,,与其纵坐标值相同,该点在该函数图象上;故选:B.【题目点拨】本题主要考查了二次根式的计算与函数图像上点的性质,熟练掌握相关概念是解题关键.9、B【解题分析】

根据反比例函数解析式,判断出反比例函数的增减性,根据增减性判断与的大小即可.【题目详解】由反比例函数的k的值为负数,∴各象限内,y随x的增大而增大,∵−2>−3,∴>,故选B【题目点拨】此题考查反比例函数图象上点的坐标特征,解题关键在于判断出反比例函数的增减性10、B【解题分析】

根据最简二次根式的定义进行解答即可.【题目详解】解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.【题目点拨】本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.二、填空题(每小题3分,共24分)11、1【解题分析】

根据题意画出图形,根据勾股定理的逆定理进行判断即可.【题目详解】如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C1两点,综上所述,共有1个点,故答案为1.【题目点拨】本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.12、.【解题分析】

连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【题目详解】如图,连接BD,四边形ABCD是菱形,∠BAD=∠ADC=×120°=60°AB=AD(菱形的邻边相等),△ABD是等边三角形,连接DE,B、D关于对角AC对称,DE与AC的交点即为所求的点P,PE+PB的最小值=DEE是AB的中点,DE⊥AB菱形ABCD周长为16,AD=16÷4=4DE=×4=2故答案为213、1【解题分析】这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.14、10【解题分析】

连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.【题目详解】连接AD,∵,点为边的中点,∴AD⊥BC,∵,的面积是,∴AD=16×2÷4=8,∵EF是AC的垂直平分线,∴点C关于直线EF的对称点为A,∴AD的长为CM+MD的最小值,∴周长的最小值为AD+CD=8+BC=8+2=10.故填:10.【题目点拨】此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.15、【解题分析】

设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.【题目详解】解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,

根据题意得.故答案为.【题目点拨】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.16、【解题分析】

根据平行四边形的性质及两点之间线段最短进行作答.【题目详解】由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.【题目点拨】本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.17、1【解题分析】

作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【题目详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【题目点拨】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.18、1【解题分析】

先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC=4,DC=AB=6,DC//AB,∴∠EAB=∠AED,∵∠EAB=∠DAE,∴∠DAE=∠DEA,∴DE=AD=4,∴CE=CD-DE=6-4=2,∵点F、G分别是BE、BC的中点,∴FG=EC=1,故答案为1.【题目点拨】本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.三、解答题(共66分)19、【解题分析】

直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【题目详解】解:当时:原式.【题目点拨】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20、(1)①45;②不变化;(2)成立;(3)详见解析.【解题分析】

(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证Rt△EAG≅Rt△EPF得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【题目详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点E作EF⊥BC于点F,EG⊥AB于点G.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BD平分∠ABC.∴EG=EF.∴RtΔEAG≌RtΔEPF.∴∠AEG=∠PEF.∵∠ABC=∠EFB=∠EGB=90°,∴∠GEF=∠GEP+∠PEF=90°.∴∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.∴∠APE=∠EAP=45°.证明二:如图所示.过点E作EF⊥AD于点F,延长FE交BC于点G,连接CE.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BA=BC   ∴ΔBAE≌ΔBCE.∴EC=EA=EP,∠EAB=∠ECB.∴∠EPC=∠ECP=∠EAB.又∵∠BPE+∠EPC=180°,∴∠BPE+∠EAB=180°.又∵∠EAB+∠ABP+∠BPE+∠AEP=360°   ∴∠AEP=90°.∴∠APE=∠EAP=45°.【题目点拨】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点21、9-5+【解题分析】

根据二次根式的运算法则即可求出答案.【题目详解】解:原式=6+3-5+=9-5+.【题目点拨】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题22、【解题分析】

分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【题目详解】由①得,x≥-1,

由②得,x<3,

所以,不等式组的解集为:-1≤x<3,

在数轴上表示如下:【题目点拨】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23、(1)证明见解析;(2)CQ=【解题分析】分析:(1)利用△A1CB1≌△ACB得到CA1=CA,再根据旋转的性质得∠B1CB=∠A1CA=45°,则∠BCA1=45°,于是根据“ASA”判断△CQA1≌△CP1A,所以CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②,先在Rt△AP1P中根据含30度的直角三角形三边的关系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性质得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.详解:(1)∵△A1CB1≌△ACB,∴CA1=CA.∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了等腰直角三角形的性质.24、(1);(2)40千米/小时.【解题分析】

(1)甲车行驶过程中y与x之间的函数解析式两种,即从A地到B地是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论