2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题含解析_第1页
2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题含解析_第2页
2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题含解析_第3页
2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题含解析_第4页
2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省海伦市第四中学八年级数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若将0.0000065用科学记数法表示为6.5×10n,则n等于()A.﹣5 B.﹣6 C.﹣7 D.﹣82.不等式组的解集是()A. B. C. D.3.如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.5 B.-5 C.3 D.4.要得到函数y2x3的图象,只需将函数y2x的图象()A.向左平移3个单位 B.向右平移3个单位C.向下平移3个单位 D.向上平移3个单位5.已知,则()A. B. C. D.6.在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是()A.20 B.40 C.24 D.487.下列各式:,,,,(x+y)中,是分式的共有()A.1个 B.2个 C.3个 D.4个8.下列各点中,在函数y=﹣2x的图象上的是()A.(12,1) B.(﹣12,1) C.(﹣12,﹣1)D(09.下列函数中,是一次函数的是().①②③④⑤A.①⑤ B.①④⑤ C.②③ D.②④⑤10.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.39.39.39.3方差0.0250.0150.0350.023则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.如图,在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED=,则BC=_____.12.如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.13.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.14.如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.15.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.16.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.17.函数的图象位于第________象限.18.在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.三、解答题(共66分)19.(10分)下面是某公司16名员工每人所创的年利润(单位:万元)53355108535583585(1)完成下列表格:每人所创年利润/万元10853人数14(2)这个公司平均每人所创年利润是多少?20.(6分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.21.(6分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元).(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y与x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?22.(8分)如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.(8分)计算:(1);(2)()2﹣(3+)(3﹣).24.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图象,直接写出当﹣4<x<2(x≠0)时,y的取值范围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.25.(10分)在平面直角坐标系中,已知,,三点的坐标.(1)写出点关于原点的对称点的坐标,点关于轴的对称点的坐标,点关于轴的对称点的坐标;(2)求(1)中的的面积.26.(10分)在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000065=6.5×10﹣6,则n=﹣6,故选:B.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【解题分析】

分别求出各不等式的解集,再求出其公共解集即可.【题目详解】解:

解不等式①得:x⩽2,

解不等式②得:x>−3,

∴不等式组的解集为:−3<x⩽2,

故选:A.【题目点拨】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、B【解题分析】

首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.【题目详解】解:AC=则AD=5

∵A点表示0,

∴D点表示的数为:-5

故选:B.【题目点拨】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.4、D【解题分析】

平移后相当于x不变y增加了3个单位,由此可得出答案.【题目详解】解:由题意得x值不变y增加3个单位

应向上平移3个单位.

故选:D.【题目点拨】本题考查一次函数图象的几何变换,注意平移k值不变的性质.5、B【解题分析】

先利用二次式的乘法法则与二次根式的性质求出m=2=,再利用夹值法即可求出m的范围.【题目详解】解:=2=,∵25<28<36,∴.故选:B.【题目点拨】本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.6、A【解题分析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【题目详解】四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,故菱形的周长为4×5=20.故选A.【题目点拨】此题考查菱形的性质,解题关键在于利用勾股定理进行计算.7、C【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】,,分母中含有字母,因此是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选C.【题目点拨】本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.8、B【解题分析】

把四个选项中的点分别代入解析式y=-2x,通过等式左右两边是否相等来判断点是否在函数图象上.【题目详解】A、把(12,1)代入函数y=-2x得:左边=1,右边=-1,左边≠右边,所以点(12,1)不在函数B、把(-12,1)代入函数y=-2x得:左边=1,右边=1,左边=右边,所以点(-12,1)在函数C、把(-12,-1)代入函数y=-2x得:左边=-1,右边=1,左边≠右边,所以点(-12,-1)不在函数D、把(0,-1)代入函数y=-2x得:左边=-1,右边=0,左边≠右边,所以点(0,-1)不在函数y=-2x的图象上,故本选项不符合题意;故选B.【题目点拨】本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.9、A【解题分析】

根据一次函数的定义条件进行逐一分析即可.【题目详解】解:①y=-2x是一次函数;②自变量x在分母,故不是一次函数;③y=-2x2自变量次数不为1,故不是一次函数;④y=2是常数,故不是一次函数;⑤y=2x-1是一次函数.所以一次函数是①⑤.故选:A.【题目点拨】本题主要考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.10、B【解题分析】

根据方差的定义,方差越小数据越稳定,对题目进行分析即可得到答案.【题目详解】因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每小题3分,共24分)11、【解题分析】

先根据垂径定理得出AE=EB=AB,再由勾股定理求出半径和OE的值,最后利用三角形中位线的性质可知BC=2OE,则BC的长度即可求解.【题目详解】∵OD⊥AB,∴AE=EB=AB=,设OA=OD=r,在Rt△AOE中,∵AO2=AE2+OE2,ED=∴r2=()2+(r﹣)2,∴r=,∴OE=,∵OA=OC,AE=EB,∴BC=2OE=,故答案为:.【题目点拨】本题主要考查勾股定理,垂径定理,三角形中位线的性质,掌握勾股定理,垂径定理,三角形中位线的性质是解题的关键.12、144米1.【解题分析】

将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【题目详解】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为10-1=18(米),宽为10-1=8(米),则草地面积为18×8=144米1.故答案为:144米1.【题目点拨】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.13、﹣1【解题分析】

直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【题目详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【题目点拨】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.14、【解题分析】

由矩形的性质可证明S△DFP=S△PBE,即可求解.【题目详解】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×5=5,∴S阴=5+5=10,故答案为:10.【题目点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.15、x<1.【解题分析】

根据一次函数与一元一次不等式的关系即可直接得出答案.【题目详解】由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<1,故答案为:x<1.【题目点拨】本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.16、1.6【解题分析】

确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【题目详解】解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,∴OD是△ABC的中位线,∴AC=2OD=2×0.8=1.6米.故答案为1.6米.【题目点拨】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.17、二、四【解题分析】

根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限,可得答案.【题目详解】解:反比例函数y=-的k=-6<0,

∴反比例函数y=-的图象位于第二、四象限,

故答案为二、四.【题目点拨】本题考查反比例函数的性质,解题关键是利用y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限判断.18、1<x<2或x>2+.【解题分析】

先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.【题目详解】由题意可得抛物线:y=(x−2),对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=−(x−2);如图,由题意得:当y=1时,(x−2)=1,解得:x=2+,x=2−,∴C(2−,1),F(2+,1),当y=1时,−(x−2)=1,解得:x=3,x=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;故答案为1<x<2或x>2+.【题目点拨】此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.三、解答题(共66分)19、(1)答案见解析;(2)5.375万元.【解题分析】

(1)直接由数据求解即可求得答案;(2)根据加权平均数的计算公式列式计算即可得.【题目详解】解:1)完成表格如下:每人所创年利润/万元10853人数1384(2)这个公司平均每人所创年利润是=5.375(万元).【题目点拨】本题考查了统计表、加权平均数,熟练掌握加权平均数的计算公式是解题的关键.20、4【解题分析】

首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【题目详解】设△ABP中AB边上的高是h.∵S矩形ABCD=3S△PAB,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为4.故答案为:4.【题目点拨】本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.21、(1)1.5;6;(2)y=6x-27,(x>6);(3)21元.【解题分析】

(1)根据表格中的数据,9月份属于第一种收费,5a=7.5;10月份属于第二种收费,6a+(9-6)c=27;即可求出a、c的值;(2)就是求分段函数解析式;(3)代入解析式求函数值.【题目详解】解:(1)由题意5a=7.5,解得a=1.5;6a+(9−6)c=27,解得c=6.∴a=1.5,c=6(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x−6)=9+6(x−6)=6x−27,(3)将x=8代入y=6x−27(x>6)得y=6×8−27=21(元).答:该户11月份水费是21元.【题目点拨】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.22、见解析【解题分析】试题分析:根据等腰三角形的性质得出∠ADC=∠BEC=90°,再根据∠C为公共角即可得∠CBE=∠CAD.试题解析:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,又∵BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CBE+∠C=∠CAD+∠C=90°,∴∠CBE=∠CAD.23、(1)6;(2)﹣2.【解题分析】试题分析:(1)直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质、二次根式乘法运算法则分别化简求出答案;(2)直接利用乘法公式计算得出答案.解:(1)原式=6+4﹣9×﹣1=6;(2)原式=4﹣2﹣(9﹣5)=﹣2.24、(1)①k=12;②y的取值范围是y<﹣3或y>6;(2)k=6.【解题分析】

(1)①先求得点A的坐标,再把点A的坐标代入y=(k>0)即可求得k值;②求得当x=﹣4和x=2时y的值,结合图像,再利用反比例函数的性质即可求得y的取值范围;(2)设点A为(a,),根据勾股定理求得OA=,根据函数的对称性及直角三角形斜边的性质可得OA=OB=OC=,根据三角形的面积公式求得a=,即可得点A为(2,),代入即可求得k值.【题目详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论