版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林长春市宽城区数学八下期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况2.若在反比例函数的图像上,则下列结论正确的是()A. B.C. D.3.方程的解是()A.x=3 B.x=2 C.x=1 D.x=﹣14.已知n是自然数,是整数,则n最小为()A.0 B.2 C.4 D.405.八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是()A.众数是58 B.平均数是50C.中位数是58 D.每月阅读数量超过40本的有6个月6.如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若CD=6,则点D到AB的距离是()A.9 B.8 C.7 D.67.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A. B.C. D.8.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.29.在平行四边形ABCD中,对角线AC,BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90° B.AC=BDC.AC⊥BD D.∠BAD=∠ADC10.如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=2,连接AE、AF,则AE+AF的最小值为()A.25 B.32 C.92二、填空题(每小题3分,共24分)11.Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.12.一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.13.如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.14.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.15.若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.17.实数在数轴上的对应点的位置如图所示,则__________.18.已知一次函数(为常数,且).若当时,函数有最大值7,则的值为_____.三、解答题(共66分)19.(10分)如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面积.20.(6分)解方程:(1-3y)2+2(3y-1)=1.21.(6分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.22.(8分)如图,四边形ABCD和四边形AEFB都是平行四边形,求证:△ADE≌△BCF.23.(8分)下表给出三种上宽带网的收费方式.收费方式月使用费/元包时上网时间/超时费/(元/)不限时设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;填空:当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;24.(8分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:成绩频数(人数)频率(1)在频数分布表中,的值为________,的值为________;(2)将频数直方图补充完整;(3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?25.(10分)如图,平行四边形ABCD的四个内角的平分线相交成四边形EFGH,求证:(1)EG=HF.(2)EG=BC-AB.26.(10分)(1)如图1,要从电线杆离地面5m处向地面拉一条钢索,若地面钢索固定点A到电线杆底部B的距离为2m,求钢索的长度.(2)如图2,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,求菱形的周长.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.2、D【解题分析】
将点A(a,b)代入反比例函数的解析式,即可求解.【题目详解】解:∵A(a,b)在反比例函数的图象上,
∴,即ab=-2<1,
∴a与b异号,
∴<1.
故选D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.3、D【解题分析】
采用排除法和代入法相结合,即可确定答案。【题目详解】解:由x=1为增根,故排除C;A选项,当x=3,方程左边为1,右边为,显然不对;B选项,当x=2时,方程左边为2,右边,显然不对;当x=-1时,方程左边为-1,右边为-1,即D正确;故答案为D.【题目点拨】本题考查了分式方程的解法,但作为选择题,采用排除法和代入法也是一种不错的选择。4、C【解题分析】
求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.【题目详解】解:∵n是自然数,是整数,且211-n≥1.
∴(211-n)是完全平方数,且n≤211.
∴(211-n)最大平方数是196,即n=3.
故选:C.【题目点拨】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.5、B【解题分析】
根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.【题目详解】A.出现次数最多的是58,众数是58,故A正确;B.平均数为:,故B错误;C.由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;D.由折线统计图看出每月阅读量超过40本的有6个月,故D正确;故选:B【题目点拨】此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.6、D【解题分析】分析:结合已知条件在图形上的位置,由角平分线的性质可得点D到AB的距离是6cm.详解:点D到AB的距离=CD=6cm.故选D..点睛:此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.7、C【解题分析】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100)=60+0.8x﹣80=0.8x﹣20,所以,y与x的函数关系为,纵观各选项,只有C选项图形符合.故选C.点睛:本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.8、A【解题分析】
先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【题目详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.9、C【解题分析】
根据平行四边形的性质、矩形的判定定理对各项进行判断分析即可.【题目详解】A.有一个角为直角的平行四边形是矩形,正确;B.对角线相等的平行四边形是矩形,正确;C.并不能判定平行四边形ABCD为矩形,错误;D.∵四边形ABCD是平行四边形,∠BAD=∠ADC∴∠BAD=∠ADC=90°,根据有一个角为直角的平行四边形是矩形,正确;故答案为:C.【题目点拨】本题考查了矩形的判定问题,掌握平行四边形的性质、矩形的判定定理是解题的关键.10、A【解题分析】
如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小.【题目详解】解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小.
∵AH=EF,AH∥EF,
∴四边形EFHA是平行四边形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH=AC2+AH2=25,
∴AE+AF的最小值25,【题目点拨】本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、1【解题分析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.【题目详解】解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),∴AB=2,∴BC==4,∴点C的坐标为(3,4),当y=4时,4=﹣x﹣3,得x=﹣7,∴C′(﹣7,4),∴CC′=10,∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,故答案为:1.【题目点拨】此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.12、1【解题分析】
利用待定系数法求后8分钟的解析式,再求函数值.【题目详解】解:根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系,设y=kx+b
当x=4,y=20
当x=12,y=30
∴∴
∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.1x+15
当x=8时,y=1.
故答案为:1.【题目点拨】本题考查利用待定系数法求一次函数解析式,并根据自变量取值,再求函数值.求出解析式是解题关键.13、1【解题分析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.【题目详解】解:设A(1,m).把A(1,m)代入y=6﹣x得:m=﹣1+6=4,把A(1,4)代入y=kx得4=1k,解得k=1.故答案是:1.【题目点拨】本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.14、21.2【解题分析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【题目详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【题目点拨】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.15、y=-x【解题分析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.【题目详解】把点(-2,2)代入y=kx得2=-2k,k=-1,所以正比例函数解析式为y=-x.故答案为:y=-x.【题目点拨】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.16、1.1【解题分析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【题目详解】连接DF,如图所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.1;∴CF=1.1;故答案为1.1.【题目点拨】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.17、【解题分析】
首先根据数轴的含义,得出,然后化简所求式子,即可得解.【题目详解】根据数轴,可得∴原式=故答案为.【题目点拨】此题主要考查绝对值的性质,熟练掌握,即可解题.18、a=2或a=-3.【解题分析】
分类讨论:a>0时,y随x的增大而增大,所以当x=4时,y有最大值7,然后把y=7代入函数关系式可计算出对应a的值;a<0时,y随x的增大而减小,所以当x=-1时,y有最大值7,然后把x=-1代入函数关系式可计算对应a的值.【题目详解】解:①a>0时,y随x的增大而增大,则当x=4时,y有最大值7,把x=4,y=7代入函数关系式得7=4a-a+1,解得a=2;②a<0时,y随x的增大而减小,则当x=-1时,y有最大值7,把x=-1代入函数关系式得
7=-a-a+1,解得a=-3,所以a=2或a=-3.【题目点拨】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.三、解答题(共66分)19、(1),;(2).【解题分析】
(1)先把P(n,-2)代入y=-2x+3即可得到n的值,从而得到P点坐标为(,-2),然后把P点坐标代入y=-x+m可计算出m的值;
(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.【题目详解】(1)∵与图象交于点,∴将代入得到,再将代入中得到.(2)∵交轴于点,∴令得,∴.∵交轴于点,∴令得,∴.∴.∴.【题目点拨】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.20、【解题分析】
先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】解:【题目点拨】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.21、(1)①P2,P3,②1≤x≤或≤x≤-1;(2)2-≤a≤1.【解题分析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.【题目详解】解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.【题目点拨】本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.22、见解析.【解题分析】
由四边形ABCD和四边形AEFB,证明四边形DEFC为平行四边形,根据平行四边形的性质可以得到△ADE和△BCF的三边相等,从而证明它们全等.【题目详解】解:证明:∵四边形ABCD为平行四边形,∴,∵四边形AEFB是平行四边形,∴,∴,∴四边形DEFC为平行四边形,∴DE=FC,在△ADE和△BCF中∵∴△ADE≌△BCF(SSS)【题目点拨】本题考查全等三角形的判定,平行四边形的判定和性质.在解决本题中易证明三角形的两组对应边AD=BC,AE=BF,所以解题关键是证明四边形DEFC为平行四边形,并因此证明DE=FC.23、;;;不超过;超过而不超过;超过.【解题分析】
(1)根据表格写出函数的解析式,注意分段表示函数的解析式.(2)根据函数的解析数求解的交点,进而可得最省钱的取值范围.【题目详解】解:根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;解得所以当不超过时,选择方式最省钱同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱解得所以当超过而不超过,选择方式B最省钱根据前面两问可得当超过.选择方式C最省钱【题目点拨】本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.24、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.【解题分析】
(1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;(2)根据(1)补全直方图;(3)求出成绩在分以上(含)的学生人数除以总人数即可.【题目详解】(1)∵参加数学測验的总人数为:∴,(2)如图:该直方图为所求作..(3)成绩在分以上的学生人数为人,全班总人数为人,占全班总人数百分比为【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保咨询顾问聘用协议
- 读儒林外史的读后感500字8篇
- 旅游开发招投标保密承诺书
- 服装厂消防安全员招聘协议
- 仪器仪表采购招投标策略分析
- 餐厅领班个人年终总结5篇
- 医疗设备招标文件范本一
- 印刷厂给水系统施工合同
- 房地产开发招投标风险防控策略
- 城市雕塑艺术干挂石材施工协议
- 低纤维蛋白原血症的护理查房
- 数学4教材介绍
- 全国大学生职业生涯规划大赛
- 肩关节镜术的健康宣教
- 关于学校安全保卫工作存在的问题及对策
- 2024年广西铝业集团有限公司招聘笔试参考题库附带答案详解
- 2024年西藏开发投资集团有限公司招聘笔试参考题库含答案解析
- 爱校主题班会课件
- 黑龙江省哈尔滨市南岗区2023-2024学年九年级上学期期末语文试题
- 国际人权法与强制劳动保护人权的法律框架
- 设立绿化养护服务公司商业计划书
评论
0/150
提交评论