版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省汕头市科利园实验学校数学八下期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是()A.甲成绩的平均分低于乙成绩的平均分;B.甲成绩的中位数高于乙成绩的中位数;C.甲成绩的众数高于乙成绩的众数;D.甲成绩的方差低于乙成绩的方差.2.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.993.已知四边形是平行四边形,下列结论中正确的个数有()①当时,它是菱形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.A.4 B.3 C.2 D.14.若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A.不变 B.是原来的3倍 C.是原来的6倍 D.是原来的9倍5.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.46.在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于()A.2 B.4 C.6 D.87.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90° B.60° C.45° D.30°8.下列图象中,不能表示是的函数的是()A. B. C. D.9.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)3538424440474545则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、4310.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.12.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.13.分式的值为1.则x的值为_____.14.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.51.01.52.02.5当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.15.已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.16.小刚和小丽从家到运动场的路程都是,其中小丽走的是平路,骑车速度是.小刚需要走上坡路和的下坡路,在上坡路上的骑车速度是,在下坡路上的骑车速度是.如果他们同时出发,那么早到的人比晚到的人少用_________.(结果化为最简)17.当x______时,在实数范围内有意义.18.如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.三、解答题(共66分)19.(10分)某校计划成立下列学生社团:A.合唱团:B.英语俱乐部:C.动漫创作社;D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次接受调查的学生共有多少人;(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.20.(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表售价x(元)152025・・・・・・日销售量y(件)252015・・・・・・若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.21.(6分)(1)如图①,点M是正方形ABCD的边BC上一点,点N是CD延长线上一点,且BM=DN,则线段AM与AN的关系.(2)如图②,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,判断BE,DF,EF三条线段的数量关系,并说明理由.(3)如图③,在四边形ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边BC、CD上,且∠EAF=45°,若BD=5,EF=3,求四边形BEFD的周长.22.(8分)计算:(1)2﹣+;(2)(3+)×(﹣5)23.(8分)如图,矩形的长,宽,现将矩形的一角沿折痕翻折,使得点落在边上,求点的位置(即的长)。24.(8分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)求S△ABC的面积.25.(10分)如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.(1)如果图中线段都可画成有向线段,那么在这些有向线段所表示的向量中,与向量相等的向量是;(2)设=,=,=.试用向量,或表示下列向量:=;=.(3)求作:.(请在原图上作图,不要求写作法,但要写出结论)26.(10分)已知x=+1,y=-1,求x2+xy+y2的值.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
通过计算甲、乙的平均数可对A进行判断;利用中位数的定义对B进行判断;利用众数的定义对C进行判断;根据方差公式计算出甲、乙的方差,则可对D进行判断.【题目详解】甲的平均数=
(分),乙的平均数=
=8
(分)
,所以A选项错误;甲的中位数是8分,乙的中位数是9分,故B选项错误;甲的众数是8分,乙的众数是10分,故C选项错误;甲的方差=,乙的方差=,故D选项正确,故选:D.【题目点拨】此题考查数据的统计计算,正确掌握平均数的计算公式,众数、中位数的计算方法,方差的计算公式是解题的关键.2、C【解题分析】
解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【题目详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【题目点拨】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3、B【解题分析】
根据特殊平行四边形的判定即可判定.【题目详解】四边形是平行四边形,①当时,邻边相等,故为菱形,正确;②当时,对角线垂直,是菱形,正确;③当时,有一个角为直径,故为矩形,正确;④当时,对角线相等,故为矩形,故错误,由此选B.【题目点拨】此题主要考查特殊平行四边形的判定,解题的关键是熟知特殊平行四边形的判定定理.4、B【解题分析】试题分析:根据分式的基本性质即可求出答案.解:原式=;故选B.点睛:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.5、C【解题分析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【题目详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【题目点拨】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.6、D【解题分析】
求出AD,在Rt△BDA中,根据勾股定理求出BD即可.【题目详解】∵AB=AC=10,CD=4,∴AD=10-4=6,∵BD是AC边上的高,∴∠BDA=90°,在Rt△BDA中由勾股定理得:,故选:D.【题目点拨】本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.7、A【解题分析】
根据菱形的判定方法即可解决问题;【题目详解】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.【题目点拨】本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.8、D【解题分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.【题目详解】A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;
B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;
C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;
D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D符合题意;
故选:D.【题目点拨】考查了函数的定义,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.9、B【解题分析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:353840144454547,则这组数据的中位数为:=43,=(35+38+1+44+40+47+45+45)=1.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.10、B【解题分析】
根据函数图像分析即可解题.【题目详解】由函数图像可知一次函数单调递减,正比例函数单调递增,将(k-m)x+b<0变形,即kx+b<mx,对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,∵点P的横坐标为1,∴即为所求解集.故选B【题目点拨】本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度,将不等式问题转化为图像问题是解题关键,二、填空题(每小题3分,共24分)11、1【解题分析】
∵AM=AC,BN=BC,∴AB是△ABC的中位线,∴AB=MN=1m,故答案为1.12、1.【解题分析】
设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.13、2【解题分析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】解:由题意可得|x|-2=1且x+2≠1,
解得x=2.
故答案是:2.【题目点拨】考查了分式的值为零的条件,由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.14、1【解题分析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.【题目详解】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得:,
解得:,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.【题目点拨】吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.15、3【解题分析】
根据求平均数的方法先求出a,再把这组数从小到大排列,3处于中间位置,则中位数为3.【题目详解】a=3×5-(1+4+3+5)=2,把这组数从小到大排列:1,2,3,4,5,
3处于中间位置,则中位数为3.故答案为:3.【题目点拨】本题考查中位数与平均数,解题关键在于求出a.16、【解题分析】
先分别求出小刚和小丽用的时间,然后比较即可得出答案.【题目详解】解:小丽用的时间为=,
小刚用的时间为+=,
>,
∴-=,
故答案为.【题目点拨】本题考查列代数式以及分式的加减.正确的列出代数式是解决问题的关键.17、x≥-1且x≠1.【解题分析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【题目详解】解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1故答案为:x≥-1且x≠1.【题目点拨】本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.18、【解题分析】本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.解:已知山坡AC的坡度i=1:0.5,∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,∴=tan30°,即=,解得:x=,∴CB=2x=,故答案为.三、解答题(共66分)19、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.【解题分析】
(1)由B社团人数及其所占百分比可得总人数;(2)总人数减去其它社团人数可求得D的人数,再用360°乘以D社团人数所占比例即可得;(3)总人数乘以样本中A、C社团人数和占被调查人数的比例即可得.【题目详解】解:(1)本次接受调查的学生共有90÷45%=200(人),(2)D社团人数为200-(26+90+34+10)=40(人),补全图形如下:扇形统计图中D选项所对应扇形的圆心角为360°×40(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为300×26+34200=90答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.【题目点拨】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20、(1)一次函数解析式为y=-x+1;(2)每日所获利润为200元.【解题分析】分析:(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.详解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).则.解得:k=﹣1,b=1.即一次函数解析式为y=﹣x+1.(2)当x=30时,每日的销售量为y=﹣30+1=10(件),每日所获销售利润为(30﹣10)×10=200(元).点睛:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.21、(1)结论:AM=AN,AM⊥AN.理由见解析;(2)BE+DF=EF;(3)四边形BEFD的周长为1.【解题分析】
(1)利用正方形条件证明△ABM≌△ADN,即可推出结论,(2)过点A作AG⊥AE交CD延长线于点G,证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题,(3)过点A作AG⊥AE交CD延长线于点G.证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题.【题目详解】(1)结论:AM=AN,AM⊥AN.理由:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADN=∠BAD=90°,∵BM=DN,∴△ABM≌△ADN,∴AM=AN,∠BAM=∠DAN,∴∠AMN=∠BAD=90°,∴AM⊥AN,(2)如图②中,过点A作AG⊥AE交CD延长线于点G.∵四边形ABCD为正方形,∴AB=AD,∠B=∠BAD=∠ADC=90°.∴∠B=∠ADG=90°,∠BAE+∠EAD=90°.∵AG⊥AE,∴∠DAG+∠EAD=90°.∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.(3)如图③中,过点A作AG⊥AE交CD延长线于点G.∵AB=AD,∠ABC+∠ADC=180°,∠ADG+∠ADC=180°∴∠ABE=∠ADG,∵AG⊥AE,∴∠DAG+∠EAD=90°.∵∠BAE+∠EAD=90°∴∠BAE=∠DAG.在△ABE和△ADG中,,∴△ABE≌△ADG.∴AE=AG,BE=DG.∵∠EAF=45°,AG⊥AE,∴∠EAF=∠GAF=45°.在△FAE和△FAG中,,∴△AEF≌△AGF.∴EF=FG.∵FG=DF+DG=DF+BE,∴BE+DF=EF.∴四边形BEFD的周长为EF+(BE+DF)+DB=3+3+5=1.【题目点拨】本题考查了三角形全等的判定,正方形的性质,中等难度,作辅助线是解题关键.22、(1)3(2)-2-13【解题分析】
(1)先化简,再合并同类项即可求解.(2)利用二次根式的乘除法运算即可.【题目详解】(1)2﹣+=6-4+=3(2)(3+)×(﹣5)=3-15+2-5=-2-13【题目点拨】此题考查二次根式的混合运算,解题关键在于掌握运算法则23、点E在离点D的距离为处.【解题分析】
由折叠的性质可得BC=BC'=5,CE=C'E,由勾股定理可求AC'=4,可得C'D=1,由勾股定理可求DE的长,即可求E点的位置.【题目详解】∵将矩形的一角沿折痕BE翻折,使得C点落在AD边上,∴BC=BC'=5,CE=C'E在Rt△ABC'中,AC'==4,∴C'D=AD-AC'=1,在Rt△C'
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2006年江苏高考语文真题及答案
- 《焊工基础知识》课件
- 《客户的初次拜访》课件
- 语义网在病历应用-洞察分析
- 预训练模型发展-洞察分析
- 小数加密与解密-洞察分析
- 通信芯片技术创新-洞察分析
- 网络培训中心行业法规与政策研究-洞察分析
- 隐私保护的隐私设计原则-洞察分析
- 隐式知识图谱构建-洞察分析
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
- 你是排长我是兵(2022年山东济南中考语文试卷记叙文阅读题及答案)
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 广东省中山市2023-2024学年高三物理上学期第五次统测试题含解析
- 《体育科学研究方法》题库
- 高级会计实务案例分析-第三章 企业全面预算管理
- DL∕T 5142-2012 火力发电厂除灰设计技术规程
- 城域网建设方案
评论
0/150
提交评论