湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题含解析_第1页
湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题含解析_第2页
湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题含解析_第3页
湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题含解析_第4页
湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉东湖高新区2024届数学八年级第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一组数据为:3130352930,则这组数据的方差是()A.22 B.18 C.3.6 D.4.42.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.43.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.65.下列运算正确的是()A. B. C. D.6.下列英文大写正体字母中,既是中心对称图形又是轴对称图形的是()A. B. C. D.7.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=()A.70° B.60° C.50° D.40°8.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是69.平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为()A.6cm B.3cm C.9cm D.12cm10.已知平行四边形ABCD中,∠B=2∠A,则∠A=()A.36° B.60° C.45° D.80°二、填空题(每小题3分,共24分)11.如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.当时,正方形ABCD的边长______.连结OD,当时,______.12.计算:__.13.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.14.若一组数据2,,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.15.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.17.在,,,,中任意取一个数,取到无理数的概率是___________.18.若方程x2+kx+9=0有两个相等的实数根,则k=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是20.(6分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.(1)根据题题意,填写下表(单位:元)累计购物实际花费

130

290

x

在甲商场

127

在乙商场

126

(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?21.(6分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.求证:.22.(8分)如图,点为轴负半轴上的一个点,过点作轴的垂线,交函数的图像于点,交函数的图像于点,过点作轴的平行线,交于点,连接.(1)当点的坐标为(–1,0)时,求的面积;(2)若,求点的坐标;(3)连接和.当点的坐标为(,0)时,的面积是否随的值的变化而变化?请说明理由.23.(8分)如图,在□ABCD中,点E,F分别在边AB,DC上,且AE=CF,连接DE,BF.求证:DE=BF.24.(8分)某产品生产车间有工人10名,已知每名工人每天可生产甲种产品10个或乙种产品12个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润150元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)求出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14800元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.(10分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)_____,______;(2)补全频数直方图;(3)这名学生成绩的中位数会落在______分数段;(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。26.(10分)哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).

(1)求出y与x的函数关系式(不要求写出x的取值范围);

(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据方差的定义先计算出这组数的平均数然后再求解即可.【题目详解】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.【题目点拨】方差和平均数的定义及计算公式是本题的考点,正确计算出这组数的平均数是解题的关键.2、C【解题分析】如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故选C.3、B【解题分析】

直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【题目详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【题目点拨】平行四边形的性质掌握要熟练,找到等值代换即可求解.4、A【解题分析】

由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.【题目详解】∵四边形ABCD是矩形,∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,∵折叠,∴CD=CF=10,EF=DE,在Rt△BCF中,BF==6,∴AF=AB-BF=10-6=4,在Rt△AEF中,AE2+AF2=EF2,∴AE2+16=(8-AE)2,∴AE=3,故选A.【题目点拨】本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.5、D【解题分析】

根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【题目详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【题目点拨】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.6、C【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.

故选:C.【题目点拨】此题考查中心对称图形与轴对称图形的概念,解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解题分析】

先根据平行四边形的性质得到∠C=70°,再根据DC=DB即可求∠CDB.【题目详解】∵四边形ABCD是平行四边形,∴∠C=∠A=70°,∵DC=DB,∴∠CDB=180°-2∠C=40°,故选D.【题目点拨】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.8、D【解题分析】

根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【题目详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【题目点拨】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.9、B【解题分析】

设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可【题目详解】解:设平行四边形较短的边长为x,∵相邻两边长的比为3:1,∴相邻两边长分别为3x、x,∴2x+6x=24,即x=3cm,故选B.【题目点拨】本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.10、B【解题分析】

根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.【题目详解】∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.∵∠B=2∠A,∴∠A=60°.故选B.【题目点拨】本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.二、填空题(每小题3分,共24分)11、;4或6【解题分析】

(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.【题目详解】解:(4)当n=4时,OA=4,

在Rt△COA中,AC4=CO4+AO4=4.

∵ABCD为正方形,

∴AB=CB.

∴AC4=AB4+CB4=4AB4=4,

∴AB=.

故答案为.

(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠COD=∠CAD=45°.

又∵OD=,

∴DN=DM=4.

∴D(-4,4).

在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,

∴△DNA≌△DMC.

∴CM=AN=OC-MO=3.

∵D(-4,4),

∴A(4,0).

∴n=4.

如下图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠AOD=∠ACD=45°.

又∵OD=,

∴DN=DM=4.

∴D(4,-4).

同理:△DNA≌△DMC,则AN=CM=5.

∴OA=ON+AN=4+5=6.

∴A(6,0).

∴n=6.

综上所述,n的值为4或6.

故答案为4或6.【题目点拨】本题考核知识点:正方形性质、全等三角形性质,圆等.解题关键点:熟记相关知识点.12、-【解题分析】

直接利用二次根式的性质分别计算得出答案.【题目详解】解:原式.故答案为:.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.13、菱形【解题分析】

由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.【题目详解】过点D作DE⊥AB于E,DF⊥BC于F.∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两把直尺的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故答案为:菱形.【题目点拨】本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.14、3,3,0.4【解题分析】

根据平均数求出x=3,再根据中位数、众数、方差的定义解答.【题目详解】∵一组数据2,,4,3,3的平均数是3,∴x=,将数据由小到大重新排列为:2、3、3、3、4,∴这组数据的中位数是3,众数是3,方差为,故答案为:3、3、0.4.【题目点拨】此题考查数据的分析:利用平均数求某一个数,求一组数据的中位数、众数和方差,正确掌握计算平均数、中位数、众数及方差的方法是解题的关键.15、y=2x2+1.【解题分析】

先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.【题目详解】抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.故答案是:y=2x2+1.【题目点拨】本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.16、1.【解题分析】

试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.17、【解题分析】

直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【题目详解】解:∵在,,,,中无理数只有这1个数,∴任取一个数,取到无理数的概率是,故答案为:.【题目点拨】此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.18、±1【解题分析】试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.故答案为±1.考点:根的判别式.三、解答题(共66分)19、(1)见解析(2)见解析(3)(﹣2,0)【解题分析】

(1)依据△ABC沿水平方向向左平移4个单位得△A1B1C1,即可画出△A1B1C1;(2)依据中心对称的性质,即可得到△ABC关于原点O成中心对称的△A2B2C2;(3)连接两对对应点,其交点即为对称中心.【题目详解】解:如图:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P的坐标是(﹣2,0).故答案为:(﹣2,0).【题目点拨】本题考查的是作图一旋转变换、平移变换,根据题意作出各点在几何变换下的对应点是解答此题的关键.20、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.【解题分析】

(1)根据已知得出:在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.【题目详解】解:(1)填表如下:累计购物实际花费

130

290

x

在甲商场

127

271

0.9x+10

在乙商场

126

278

0.92x+2.2

(2)根据题意得:0.9x+10=0.92x+2.2,解得:x=120.答:当x=120时,小红在甲、乙两商场的实际花费相同.(3)由0.9x+10<0.92x+2.2解得:x>120,由0.9x+10>0.92x+2.2,解得:x<120,∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.21、证明见解析.【解题分析】

根据平行四边形的性质可得:AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可证明AE=DF.【题目详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,同理可得:DF=CD,∴AE=DF,即AF+EF=DE+EF,∴AF=DE.【题目点拨】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定等知识点的应用,能综合运用性质进行推理是解此题的关键,题目比较典型,难度适中.22、(1);(2);(3)的面积不随t的值的变化而变化,理由见解析。【解题分析】

(1)根据题意首先计算出C点的坐标,再计算三角形的面积.(2)首先利用反比例函数的关系式设出A点的坐标,在表示B、C点的坐标,结合AB=BC求解未知数,即可的A点的坐标.(3)过点C作轴于点E,轴于点D,再根据P点的坐标表示A、B、C点的坐标,再利用,即可求解出的面积.【题目详解】解:(1)当点P的坐标为时,点A、B的横坐标为-1,∵点A在反比例函数上,点B在反比例函数上,∴点,点.轴,∴点C的纵坐标为4,又∵点C在上,∴点C的坐标为,(2)设点A的坐标为,则则得方程,解之,得(含正),(3)过点C作轴于点E,轴于点D。如图所示:∵点P的坐标为,∴点A的坐标为,点,点故的面积不随t的值的变化而变化【题目点拨】本题主要考查反比例函数的性质,关键在于反比例函数上的点与坐标轴形成矩形的面积性质,反比例函数上的点与坐标轴形成矩形的面积是定值.23、详见解析【解题分析】

欲证明,只要证明≌即可.由四边形ABCD是平行四边形,可证,,从而根据“SAS”可证明≌.【题目详解】证明:四边形ABCD是平行四边形,,,在和中,,≌,.【题目点拨】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、(1)y=-800x+18000;(2)安排4人生产甲产品;(3)至少要派7名工人生产乙产品.【解题分析】

(1)根据利润计算方法分别表示出甲产品、乙产品的利润,最后求和即得y,

(2)把y=14800代入y与x的函数关系式,求出x的值,

(3)列不等式求出x的取值范围,进而求出生产乙产品的人数的取值范围,确定至少安排乙产品的人数.【题目详解】解:(1)设每天安排x名工人生产甲种产品,则有(10-x)人生产乙产品,

y=10x×100+12(10-x)×150=-800x+18000,

答:每天获取利润y(元)与x(人)之间的函数关系式为y=-800x+18000;

(2)当y=14800时,即:-800x+18000=14800,

解得:x=4,

答:安排4人生产甲产品;

(3)由题意得:

-800x+18000≥15600,

解得:x≤3,

当x≤3时,10-x≥7,

因此至少要派7名工人生产乙产品.【题目点拨】本题考查一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y与x之间的函数关系是解题关键.25、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论