版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湘教版数学九年级下册完整版全册教案教学设计及教学反思1.1二次函数教学目标理解二次函数的有关概念,会列二次函数的表达式.重点:理解二次函数的有关概念.难点:理解二次函数的有关概念的应用.本节知识点通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.教学过程(1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.[实践与探索]例1m取哪些值时,函数是以x为自变量的二次函数?分析若函数是二次函数,须满足的条件是:.解若函数是二次函数,则.解得,且.因此,当,且时,函数是二次函数.回顾与反思形如的函数只有在的条件下才是二次函数.探索若函数是以x为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;(2)由题意,得,其中y是x的二次函数;(3)由题意,得(x≥0且是正整数),其中y是x的一次函数;(4)由题意,得,其中S是x的二次函数.例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.解(1);(2)当x=3cm时,(cm2).课堂练习1.下列函数,哪些是二次函数?(1) (2)(3) (4)2.当k为何值时,函数为二次函数?3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.课堂小结形如的函数叫做二次函数.[本课课外作业]A组已知函数是二次函数,求m的值.已知二次函数,当x=3时,y=-5,当x=-5时,求y的值.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.D.6.下列函数关系中,可以看作二次函数()模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系第1课时二次函数的图象与性质教学目标【知识与技能】1.会用描点法画函数的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.教学过程一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数的图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数的图象.【教学说明】①要求同学们动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2图象的性质在同一坐标系中,画出y=x2,,y=2x2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y随x的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.图象的性质1.图象开口向上.2.对称轴是y轴,顶点是坐标原点,函数有最低点.3.当x>0时,y随x的增大而增大,简称右升;当x<0时,y随x的增大而减小,简称左降.三、典例精析,掌握新知例已知函数是关于x的二次函数.(1)求k的值.(2)k为何值时,抛物线有最低点,最低点是什么?在此前提下,当x在哪个范围内取值时,y随x的增大而增大?【分析】此题是考查二次函数y=ax2的定义、图象与性质的,由二次函数定义列出关于k的方程,进而求出k的值,然后根据k+2>0,求出k的取值范围,最后由y随x的增大而增大,求出x的取值范围.解:(1)由已知得,解得k=2或k=-3.所以当k=2或k=-3时,函数是关于x的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x≥0时,y随x的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.D.2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y33.抛物线y=x2的开口向,顶点坐标为,对称轴为,当x=-2时,y=;当y=3时,x=,当x≤0时,y随x的增大而;当x>0时,y随x的增大而.4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D2.A3.上,(0,0),y轴,,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=.五、师生互动,课堂小结1.师生共同回顾二次函数图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.课后作业教材练习第1、2题.教学反思本节课是从学生画y=x2的图象,从而掌握二次函数图象的画法,再由图象观察、探究二次函数的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数的图象与性质教学目标【知识与技能】1.会用描点法画函数的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.教学过程一、情境导入,初步认识1.在坐标系中画出y=x2的图象,结合y=x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=x2的图象吗?二、思考探究,获取新知探究1画的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=x2与y=x2有何关系?归纳:y=x2与y=x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数性质问:你能结合y=x2的图象,归纳出图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越.答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1填空:①函数的图象是,顶点坐标是,对称轴是,开口方向是.②函数y=x2,y=x2和y=的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=x2,中间为y=x2,在x轴下方的为y=.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x2和y=-x2有共同的顶点和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是()3.二次函数,当x<0时,y随x的增大而减小,则m=.4.已知点A(-1,y1),B(1,y2),C(a,y3)都在函数y=x2的图象上,且a>1,则y1,y2,y3中最大的是.5.已知函数y=ax2经过点(1,2).①求a的值;②当x<0时,y的值随x值的增大而变化的情况.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D2.B3.24.y35.①a=2②当x<0时,y随x的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)图象的性质;(2)y=ax2(a≠0)关系式的确定方法.课后作业教材练习第1~2题.教学反思本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数的图象与性质教学目标【知识与技能】1.能够画出的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握的图象及性质.【教学难点】理解与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.教学过程一、情境导入,初步认识1.在同一坐标系中画出y=x2与y=(x-1)2的图象,完成下表.2.二次函数y=(x-1)2的图象与y=x2的图象有什么关系?3.对于二次函数(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数的图象与性质并完成下表.(课件出示)三、典例精析,掌握新知例1教材例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”.例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=x2向平移个单位得抛物线y=(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C2.A3.B4.(1)左,1(2)y=-2x25.解:(1)y=(x+2)2(2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.课后作业教材练习第1、2题.教学反思通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数的图象与性质教学目标【知识与技能】1.会用描点法画二次函数的图象.掌握的图象和性质.2.掌握与y=ax2的图象的位置关系.3.理解,,及的图象之间的平移转化.【过程与方法】经历探索二次函数的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数的图象与性质.【教学难点】由二次函数的图象的轴对称性列表、描点、连线.教学过程一、情境导入,初步认识复习回顾:同学们回顾一下:,,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?如何由(a≠0)的图象平移得到的图象?③猜想二次函数的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?将抛物线y=x2向左平移1个单位,再向下平移1个单位得抛物线y=(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线向右平移h个单位,再向上平移k个单位得抛物线;平移的方向和距离由h,k的值来决定.②抛物线的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数的应用【教学说明】二次函数的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1已知抛物线,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2教材例4:画二次函数的图像。解:对称轴是直线,顶点坐标为,列表:-10123…-3-2.5-11.55…描点和连线:画出图像在对称轴右边的部分,利用对称性,画出图像在对称轴左边的部分,这样就得到了的图像,如上图。【教学说明】二次函数的画图:(1)画出对称轴,描出顶点。(2)简单列表。(3)利用对称性画出整个图形。四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.4B.4+4C.12D.2+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a=,c=.6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B2.B3.C4.y轴,(0,6),<05.3,26.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数的图象与性质;②如何由抛物线平移得到抛物线.【教学说明】教师应引导学生自主小结,加深理解掌握与二者图象的位置关系.课后作业教材练习第1~3题.教学反思掌握函数,,图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数的图象与性质教学目标【知识与技能】1.会用描点法画二次函数的图象.2.会用配方法求抛物线的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方法求出二次函数(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数(a≠0)的图象的作法和性质的过程,体会建立二次函数(a≠0)对称轴和顶点坐标公式的必要性.2.在学习(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求(a≠0)的顶点坐标;②会用描点法画(a≠0)的图象并能说出图象的性质.【教学难点】能利用二次函数(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数(a≠0)的图象.教学过程一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会与的转化过程.二、思考探究,获取新知探究1如何画图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2二次函数图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线,对称轴为,顶点坐标为(),当a>0时,若,y随x增大而增大,若,y随x的增大而减小;当a<0时,若,y随x的增大而减小,若,y随x的增大而增大.探究3二次函数在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.①y=x2-3x+21②y=-3x2-18x-22解:①y=x2-3x+21=(x2-12x)+21=(x2-12x+36-36)+21=(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?S②举一例说明S随l的变化而变化?S③怎样求S的最大值呢?L解:S=l(30-l)L=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是.(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是.【教学说明】通过练习,巩固掌握的图象和性质.【答案】1.A2.B3.(1)①④(2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次的顶点坐标、对称轴;(2)由的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.课后作业教材练习第1~3题.教学反思的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.1.3不共线三点确定二次函数的表达式教学目标知识与技能:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。方法与过程:会用待定系数法求二次函数的表达式。情感与态度:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。重点:求二次函数的表达式。难点:建立适当的直角坐标系,求出函数表达式,解决实际问题。教学过程设计教师活动学生活动设计说明一、创设情境活动一如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m,施工前要先制造建筑模板,怎样画出模板的轮廓线呢?问题1:如何建立坐标系呢?问题2:分别选用哪种形式?问题3:建立坐标系后如何将已知条件中的高度、跨度等转化为点的坐标呢?给出一个具有挑战性的实际问题,通过解决此问题,让学生体会求二次函数表达式的一般方法---待定系数法,此问题解决后及时引导学生总结解法。从现实情境和已有知识经验出发,讨论求二次函数表达式的方法。二、议一议我们可以一起总结此问题的解法,①先建立适当的直角坐标系②设出抛物线的表达式③写出相关点的坐标④列方程⑤解方程{组},求出待定系数⑥写出二次函数表达式活动二已知二次函数图象过三点,求表达式,可以设一般式已知抛物线经过三点A(0,2),B(1,0),C(-2,3),求二次函数的表达式由学生自主探究后小组交流,对有困难的学生教师可适当点拨。体会由特殊到一般的数学思想在探索归纳中的应用例题讲解已知二次函数图象的顶点和另一点,求表达式,可以设顶点式例2、已知抛物线经过A(2,3)点,且其顶点坐标为(-1,-6),求二次函数的表达式课堂练习1.已知二次函数的图像过点A(0,-1)B(1,-1)C(2,3)求此二次函数表达式;2.已知二次函数的图像过点A(1,-1)B(-1,7)C(2,1)求此二次函数表达式;3.二次函数图像的顶点坐标为(-1,-8),图像与x轴的一个公共点A的横坐标为-3,求这个函数表达式让学生积极参与探索,多和同学交流,并虚心采纳别人合理的意见学生自己完成变式练习教师巡回指导巩固如何选用合适的方法确定二次函数的表达式课堂小结回顾本节课所学知识。1.掌握求二次函数的表达式的方法——待定系数法;2.能根据不同的条件,恰当地选用二次函数表达式的形式,尽量使解题简捷;3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解。学生回顾总结培养学生良好的反思习惯,加深对知识的理解
1.4二次函数与一元二次方程的联系教学目标(1)会求出二次函数与坐标轴的交点坐标;(2)了解二次函数与一元二次方程之间的关系.重、难点二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.教学过程设计给出三个二次函数:(1);(2);(3).的图象。观察图象与x轴的交点个数,分别是个、个、个.你知道图象与x轴的交点个数与什么有关吗?另外,能否利用二次函数的图象寻找方程,不等式或的解?[实践与探索] 例1.画出函数的图象,根据图象回答下列问题.(1)图象与x轴、y轴的交点坐标分别是什么?(2)当x取何值时,y=0?这里x的取值与方程有什么关系?(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?解图象如下图,(1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3).(2)当x=-1或x=3时,y=0,x的取值与方程的解相同.(3)当x<-1或x>3时,y>0;当-1<x<3时,y<0.例2.(1)已知抛物线,当k=时,抛物线与x轴相交于两点.(2)已知二次函数的图象的最低点在x轴上,则a=.(3)已知抛物线与x轴交于两点A(α,0),B(β,0),且,则k的值是.分析(1)抛物线与x轴相交于两点,相当于方程有两个不相等的实数根,即根的判别式⊿>0.(2)二次函数的图象的最低点在x轴上,也就是说,方程的两个实数根相等,即⊿=0.(3)已知抛物线与x轴交于两点A(α,0),B(β,0),即α、β是方程的两个根,又由于,以及,利用根与系数的关系即可得到结果.例3.已知二次函数,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?(3)m为何值时,这个二次函数的图象的对称轴是y轴?分析(1)要说明不论m取任何实数,二次函数的图象必与x轴有两个交点,只要说明方程有两个不相等的实数根,即⊿>0.(2)两个交点都在原点的左侧,也就是方程有两个负实数根,因而必须符合条件①⊿>0,②,③.综合以上条件,可解得所求m的值的范围.(3)二次函数的图象的对称轴是y轴,说明方程有一正一负两个实数根,且两根互为相反数,因而必须符合条件①⊿>0,②.解:(1)⊿=,由,得,所以⊿>0,即不论m取任何实数,这个二次函数的图象必与x轴有两个交点.(2)由,得;由,得;又由(1),⊿>0,因此,当时,两个交点都在原点的左侧.(3)由,得m=2,因此,当m=2时,二次函数的图象的对称轴是y轴.探索第(3)题中二次函数的图象的对称轴是y轴,即二次函数是由函数上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题.课堂练习1.已知二次函数的图象如图,则方程的解是,不等式的解集是,不等式的解集是.2.抛物线与y轴的交点坐标为,与x轴的交点坐标为.3.已知方程的两根是,-1,则二次函数与x轴的两个交点间的距离为.4.函数的图象与x轴有且只有一个交点,求a的值及交点坐标.课堂小结(1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集.[本课课外作业]A组1.已知二次函数,画出此抛物线的图象,根据图象回答下列问题.(1)方程的解是什么?(2)x取什么值时,函数值大于0?x取什么值时,函数值小于0?2.如果二次函数的顶点在x轴上,求c的值.3.不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围.4.已知二次函数,求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图;(2)以此函数图象与x轴、y轴的交点为顶点的三角形面积;(3)x为何值时,y>0.5.你能否画出适当的函数图象,求方程的解?B组6.函数(m是常数)的图象与x轴的交点有()A.0个B.1个C.2个D.1个或2个7.已知二次函数.(1)说明抛物线与x轴有两个不同交点;(2)求这两个交点间的距离(关于a的表达式);(3)a取何值时,两点间的距离最小?1.5二次函数的应用课型新授年级九年级课时第1课时科目数学课题利用二次函数解决实物抛物线问题学习目标能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.重点难点分析和表示不同背景下实际问题中变量之间的二次函数关系.利用二次函数的知识解决实际问题.导学过程主讲人备课自主预学情趣导入:明确目标,个性导入阅读教材内容,自学“动脑筋”、“议一议”,学会根据实际问题,建立适当的坐标系和二次函数关系式.自主预习单:道的截面是抛物线,且抛物线的表达式为y=-x2+2,一辆车高3m,宽4m,该车不能(填“能”或“不能”)通过该隧道.②有一抛物线形拱桥,其最大高度为16米,跨度为40米,把它的示意图放在如图所示的坐标系中,则抛物线的函数关系式为.互助探学探究导研:合作探究,互助研讨活动1小组讨论例1小红家门前有一座抛物线形拱桥,如图,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加多少?活动2跟踪训练(独立完成后展示学习成果)1.有一座抛物线拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.①如图所示的直角坐标系中,求出该抛物线的表达式;②在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数表达式;③设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少m时就会影响过往船只在桥下顺利航行.2.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管如图所示的立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.①求该抛物线的表达式;②计算所需不锈钢管的总长度.活动3课堂小结建立二次函数实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数表达式.(4)利用待定系数法求出函数表达式.(5)根据求得的表达式进一步分析,判断并进行有关的计算.总结导评:精讲点拨,归纳总结用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系.抛物线的表达式设的恰当会给解决问题带来方便.2.以桥面所在直线为x轴,以桥拱的对称轴所在直线为y轴建立坐标系.设抛物线线表达式为y=ax2,然后点B的坐标为(10,-4),即可求出表达式.提高拓学应用导思:学以致用,巩固拓展1.(铜仁中考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-eq\f(1,25)x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.-20mB.10mC.20mD.-10m2.某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高为4.4米.(1)以AB所在直线为x轴,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数表达式;(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门.教后评价课型新授年级九年级课时第2课时科目数学课题利用二次函数解决与最大值或最小值有关的实际问题学习目标能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数的图象和性质求出实际问题的答案.重点难点从实际问题中分析、找出变量之间的二次函数关系.利用二次函数的图象和性质求出实际问题的答案.导学过程主讲人备课自主预学情趣导入:明确目标,个性导入阅读教材内容,能根据几何图形及相互关系建立二次函数关系式,体会二次函数这一模型的意义.自主预习单:①如图,点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是(A)A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大②用长8m的铝合金制成如图所示的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是.第②题图第③题图③如图所示,某村修一条水渠,横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是.④某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?解:(1)y=-10000x+80000.(2)当销售定价为6元时,每月利润最大,最大利润为40000元.互助探学探究导研:合作探究,互助研讨活动1小组讨论例1某建筑的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料长为15m(图中所有线条长度之和),当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?例2某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨,综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y与x的函数关系式(不要求写出x的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.活动2跟踪训练(独立完成后展示学习成果)1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数表达式,则小球距离地面的最大高度是(C)A.1米 B.5米 C.6米 D.7米某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是(A)A.4米B.3米 C.2米 D.1米3.将一条长为80cm的铁丝做成一个正方形,则这个正方形面积的最大值是400cm2.4.小敏在校运动会跳远比赛中跳出了满意一跳,函数(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是s.5.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数表达式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?6.某中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数表达式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.活动3课堂小结学生试述:这节课你学到了些什么?总结导评:精讲点拨,归纳总结例1此题较复杂,特别要注意:中间线段用x的代数式来表示时,要充分利用几何关系;要注意顶点的横坐标是否在自变量x的取值范围内.例2要分清利润、销售量与售价的关系;分清最大利润与最大销售额之间的区别.提高拓学应用导思:学以致用,巩固拓展将一根长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是____________cm2.2.将进货单价为70元的某种商品按零售价100元/个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元3.(淮安中考)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.教后评价2.1圆的对称性【教学目标】1.理解圆的定义.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.2.圆既是轴对称图形又是中心对称图形.点与圆的位置关系.3.通过举出生活中常见圆的例子,经历观察画图的过程多角度体会和认识圆.4.结合本课教学特点,向学生进行爱国主义教育和美育渗透.激发学生观察、探究、发现数学问题的兴趣和欲望.【教学重点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的理解.【教学难点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.【教学过程】一、情境导入,初步认识圆是生活中常见的图形,许多物体都给我们以圆的形象.观察以上图形,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形.二、思考探究,获取新知1.圆的定义:如教材图所示,通过用绳子和圆规画圆的过程,你发现了什么?由此你能得到什么结论?DATE\@"M/d/yyyy"2/20/2024【教学说明】学生通过操作已经得出圆的定义,教师加以规范,有利于加深印象.如右图:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆指的是圆周,不是圆面.2.点与圆的位置关系一般地,设⊙O的半径为r,点P到圆心O的距离为d,则有(1)点P在⊙O内--d<r(2)点P在⊙O上--d=r(3)点P在⊙O外--d>r3.与圆有关的概念:如右图说明概念弦:连接圆上任意两点的线段叫做弦.(如:线段AB、AC)直径:经过圆心的弦(如AB)叫做直径.注:直径是特殊的弦,但弦不一定是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.如图,以A、B为端点的弧记作,,读作:弧AB.注:①圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.②大于半圆的弧,用三个点表示,如图中的,叫做优弧.小于半圆的弧,用两个点表示,如图中的,叫做劣弧.等圆:能够重合的两个圆叫做等圆.注:半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在等圆或同圆中,能够互相重合的弧叫等弧.注:①等弧是全等的,不仅是弧的长度相等.②等弧只存在于同圆或等圆中.【教学说明】结合图形,准确地掌握与圆有关的概念,为后面的学习打下基础.4.圆的对称性(1)圆是中心对称图形,圆心是它的对称中心.(2)圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.思考 车轮为什么做成圆形的?如果车轮不是圆的(如椭圆或正方形等),坐车人会是什么感觉?【分析】把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面滚动时,车轮中心与平面的距离保持不变.因此,车辆在平路上行驶时,坐车的人会感到非常平稳.如果车轮不是圆的,车辆在行驶时,坐车人会感觉到上下颠簸,不舒服.三、运用新知,深化理解1.在Rt△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,2cm长为半径作圆,则点C()A.在⊙A内B.在⊙A上C.在⊙A外D.可能在⊙A上也可能在⊙A外2.(1)以点A为圆心,可以画____个圆.(2)以已知线段AB的长为半径,可以画____个圆.(3)以A为圆心AB长为半径,可以画___个圆.3.如图,半圆的直径AB=________.第3题图 第3题图 第4题图【教学说明】学生自主完成,加深对新学知识的理解和检测对圆的有关概念的掌握情况,对学生的疑惑教师及时指导,并进行强化.四、师生互动,课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【课后作业】布置作业:从教材“习题2.1”中选取. 2.2圆心角、圆周角教学目标1.知道什么样的角是圆周角.2.了解圆周角和圆心角的关系,直径所对的圆周角的特征.3.能应用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题.4.通过对圆心角和圆周角关系的探索,培养学生运用已有知识,进行实验、猜想、论证,从而得到新知识.进一步体会分类讨论的思想.教学重点与难点1、了解圆周角和圆心角的关系,直径所对的圆周角的特征2、能应用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题教学难点:对圆心角和圆周角关系的探索,分类思想的应用.教学过程问题情境如下图,同学们能找到圆心角吗?它具有什么样的特征?(顶点在圆心,两边与圆相交的角叫做圆心角),今天我们要学习圆中的另一种特殊的角,它的名称叫做圆周角.实践与探索1:圆周角究竟什么样的角是圆周角呢?像图(3)中的角就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角.同学们可以通过讨论归纳如何判断一个角是不是圆周角.(顶点在圆上,两边与圆相交的角叫做圆周角)2:圆周角的度数探究半圆或直径所对的圆周角等于多少度?而的圆周角所对的弦是否是直径图1图1如图1,线段AB是⊙O的直径,点C是⊙O上任意一点(除点A、B),那么,∠ACB就是直径AB所对的圆周角.想想看,∠ACB会是怎么样的角?为什么呢?启发学生用量角器量出的度数,而后让同学们再画几个直径AB所对的圆周角,并测量出它们的度数,通过测量,同学们感性认识到直径所对的圆周角等于(或直角),进而给出严谨的说明.证明:因为OA=OB=OC,所以△AOC、△BOC都是等腰三角形,所以∠OAC=∠OCA,∠OBC=∠OCB.又∠OAC+∠OBC+∠ACB=180°,所以∠ACB=∠OCA+∠OCB==90°.因此,不管点C在⊙O上何处(除点A、B),∠ACB总等于90°,即半圆或直径所对的圆周角都相等,都等于90°(直角).反过来也是成立的,即90°的圆周角所对的弦是圆的直径3:同一条弧所对的圆周角和圆心角的关系1、分别量一量图2中弧AB所对的两个圆周角的度数比较一下.再变动点C在圆周上的位置,看看圆周角的度数有没有变化.你发现其中有什么规律吗?
2、分别量出图2中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么?我们可以发现,圆周角的度数没有变化.并且圆周角的度数恰好为同弧所对的圆心角的度数的一半.由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半.为了验证这个猜想,如图3所示,可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部.应用与拓展1、在同一个圆中,同弧或等弧所对的圆周角相等吗?为什么?相等的圆周角所对的弧相等吗,为什么?2、你能找出右图中相等的圆周角吗?3、这是一个圆形的零件,你能告诉我,它的圆心的位置吗?你有什么简捷的办法?课堂作业课本习题2.2课堂小结本节课我们一同探究了同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半;由这个结论进一步得到:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等;半圆或直径所对的圆周角都相等,都等于90°(直角).90°(直角)的圆周角所对的弦是圆的直径等结论,希望同学们通过复习,记住这些知识,并能做到灵活应用他们解决相关问题.*2.3垂径定理教学目标:【知识与技能】1.理解圆是轴对称图形,由圆的折叠猜想垂径定理,并进行推理验证.2.理解垂径定理,灵活运用定理进行证明及计算.【过程与方法】在探索圆的对称性以及直径垂直于弦的性质的过程中,培养我们观察,比较,归纳,概括的能力.【情感态度】通过对圆的进一步认识,加深我们对圆的完美性的体会,陶冶美育情操,激发学习热情.【教学重点】垂径定理及运用.【教学难点】用垂径定理解决实际问题.教学过程:一、情境导入,初步认识教师出示一张图形纸片,同学们猜想一下:(1)圆是轴对称图形吗?如果是,对称轴是什么?(2)如图,AB是⊙O的一条弦,直径CD⊥AB于点M,能发现图中有哪些等量关系?(在纸片上对折操作)学生回答或展示:【教学说明】(1)是轴对称图形,对称轴是直线CD.(2)AM=BM,.二、思考探究,获取新知探究1垂径定理及其推论的证明.1.由上面学生折纸操作的结论,教师再引导学生用逻辑思维证明这些结论,学生们说出已知、求证,再由小组讨论推理过程.已知:直径CD,弦AB,且CD⊥AB,垂足为点M.求证:AM=BM,【教学说明】连接OA=OB,又CD⊥AB于点M,由等腰三角形三线合一可知AM=BM,再由⊙O关于直线CD对称,可得.学生尝试用语言叙述这个命题.2.得出垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.还可以得出结论(垂径定理推论):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3.学生讨论写出已知、求证,并说明.学生回答:【教学说明】已知:AB为⊙O的弦(AB不过圆心O),CD为⊙O的直径,AB交CD于点M,MA=MB.求证:CD⊥AB,.证明:在△OAB中,∵OA=OB,MA=MB,∴CD⊥AB.又CD为⊙O的直径,∴.4.同学讨论回答,如果条件中,AB为任意一条弦,上面的结论还成立吗?学生回答:【教学说明】当AB为⊙O的直径时,直径CD与直径AB一定互相平分,位置关系是相交,不一定垂直.探究2 垂径定理在计算方面的应用.例1讲教材例1例2已知⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm,求AB与CD间的距离.解:(1)当AB、CD在O点同侧时,如图①所示,过O作OM⊥AB于M,交CD于N,连OA、OC.∵AB∥CD,∴ON⊥CD于N.在Rt△AOM中,AM=5cm,OM==12cm.在Rt△OCN中,CN=12cm,ON==5cm.∵MN=OM-ON,∴MN=7cm.(2)当AB、CD在O点异侧时,如图②所示,由(1)可知OM=12cm,ON=5cm,MN=OM+ON,∴MN=17cm.∴AB与CD间的距离是7cm或17cm.【教学说明】1.求直径往往只要能求出半径,即把它放在由半径所构成的直角三角形中去.2.AB、CD与点O的位置关系没有说明,应分两种情况:AB、CD在O点的同侧和AB、CD在O点的两侧.探究3与垂径定理有关的证明.例3讲教材例2【教学说明】1.作直径EF⊥AB,∴.又AB∥CD,EF⊥AB,∴EF⊥CD.∴.∴,即.2.说明直接用垂径定理即可.三、运用新知,深化理解1.如右图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.202.如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),函数(x<0)的图象过点P,则k=______.3.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE为正方形.【教学说明】1.在解决与弦的有关问题时,常过圆心作弦的垂线(弦心距),然后构造以半径、弦心距、弦的一半为边的直角三角形,利用直角三角形的性质求解.2.求k值关键是求出P点坐标.3.利用垂径定理,由AB=AC→AE=AD,再由已知条件→三个直角→正方形.【答案】1.D 2.283.解:由OE⊥CA,OD⊥AB,AC⊥AB,∴四边形ADOE为矩形.再由垂径定理;AE=AC,AD=AB,且AB=AC,∴AE=AD,∴矩形EADO为正方形.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上.3.教师强调:①圆是轴对称图形,对称轴是过圆心的任一条直线;②垂径定理及推论中注意“平分弦(不是直径)的直径,垂直于弦,并且平分弦所对的两条弧”中的限制;③垂径定理的计算及证明,常作弦心距为辅助线,用勾股定理列方程;④注意计算中的两种情况.课堂作业:教材习题2.3第1、2题.教学反思:本节课由折叠圆形入手,让学生猜想垂径定理并进一步推导论证,在整个过程中着重学习动手动脑和推理的能力,加深了对圆的完美性的体会,陶冶美育情操,激发学习热情.2.4过不共线三点作圆教学目标:1.(了解)(1)知道不在同一条直线上的三点确定一个圆.(2)三角形的外心.2.(掌握)(1)会用尺规作过不在同一直线上的三个点的圆;(2)掌握三角形的外接圆、圆的内接三角形的概念.重、难点:过不共线的三点圆的圆心的确定.学具:圆规、直尺等.教学过程:一、复习引入1.怎样作线段的垂直平分线?2.三角形两边垂直平分线的交点到三角形三个顶点的距离是否相等?3.位置和大小确定一个圆.决定圆的大小的是圆的,决定圆的位置的是.4.几点可以确定一条直线?既然一条直线可以由点来确定,那么一个圆需用几点来确定呢?今天这节课就来研究这个问题.二、讲授新课1.阅读课文,然后分两组画图:(1)组:经过一个已知点A画圆;(2)组:经过两个已知点A、B画圆.注意引导:画圆要确定圆心和半径,但要画的圆经过已知点,圆心确定以后,半径也随之确定,因此,关键是确定圆心.(学生在底下画图时,可让两生上黑板画)教师作简单小结,并在投影上展示出来.过一个点的圆有无数多个过两个点的圆有无数多个接下下来我们来学习过三个已知点画圆.(板书课题)2.例:作圆,使它经过不在同一直线上的三个已知点.已知:不在同一直线上的三点A、B、C(如图)求作:⊙O,使它经过点A、B、C.分析:以前我们学过三角形两边垂直平分线的交点到三角形三个顶点的距离相等,若把三个已知点看作是三角形的三个顶点构造三角形,那么,两边垂直平分线的交点就是我们要找的圆心.师生共同完成作图过程.(板书过程)(结合以上的作法与证明,请学生回答下列问题,引出定理)经过不在同一条直线上的三点A、B、C的圆是否存在?(存在)②、是否还有其他符合条件的圆?(没有)③根据是什么?(线段AB、BC的垂直平分线有且只有一个交点)这说明所作的圆心是唯一的,从而半径也是唯一的,则所作的圆是唯一的.3.定理:不在同一直线上的三个点确定一个圆.强调:(1)过同一直线上三点不行.(2)“确定”一词应理解成“有且只有”.4.介绍“三角形的外接圆”和“圆的内接三角形”以及“外心”的概念.5.过同一直线上的三个点能不能作圆呢?(引导学生思考与尝试)学生得出:过同一直线上的三个点不能作圆三、巩固练习1.按图填空:(1)△ABC是⊙O的三角形;(2)⊙O是△ABC的圆.2.判断:(1)经过三个点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心到三角形各顶点的距离都相等.()(5)三角形的外心是三角形三边的垂直平分线的交点.()四、思考题经过4个(或4个以上的)点是不是一定能作圆?主备人:审核人:时间:年学期课型新授年级九课时科目数学课题2.5.1直线与圆的位置关系学习目标掌握直线与圆的三种位置关系会运用直线与圆的位置关系解决问题重点难点直线与圆的三种位置关系及运用导学过程主讲人备课自主预学情趣导入:明确目标,个性导入复习导入:回顾点与圆的位置关系设圆心到点的距离为d,半径为r点A在点B在点C在位置关系和数量关系之间可以进行自主预习单:互助探学探究导研:合作探究,互助研讨一、观察探究海上日出和直尺钥匙环动态演示观察直线与圆的位置关系(2)(3)(1)直线和圆有个公共点,这时我们就说这条直线和圆,这条直线叫做圆的,这两个公共点叫做(2)直线和圆只有个公共点,这时我们就说这条直线和圆,这条直线叫做圆的,这个点叫做.(3)直线和圆公共点,这时我们就说这条直线和圆.小练习:判断下列直线与圆的位置关系二、根据点与圆的位置关系中的数形转化思想继续探究直线与圆的位置关系作图:过直线外一点作直线的垂线段问:数形可以互相转化,你能根据作图的提示将直线与圆的位置关系也量化吗?直线和圆相交直线和圆相切[直线和圆相离小练习:已知⊙O的半径为6cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则2)若AB和⊙O相切,则3)若AB和⊙O相交,则小结:判定直线与圆的位置关系的方法有2种(1)根据定义,由________________的个数来判断;(2)由_________________的大小关系来判断。直线与圆的位置关系公共点个数圆心到直线距离d与半径r间的大小关系公共点名称直线名称总结导评:精讲点拨,归纳总结提高拓学应用导思:学以致用,巩固拓展1.如图:∠AOB=30°M是OB上的一点,且OM=5cm以M为圆心,以r为半径的圆与直线OA有怎样的关系?为什么?(1)r=2cm;(2)r=4cm;(3)r=2.5cm.2.如图:M是OB上的一点,且OM=5cm以M为圆心,半径r=2.5cm作⊙M.试问过O的射线OA与OB所夹的锐角a取什么值时射线OA与⊙M(1)相切(2)相离(3)相交3.设⊙O的圆心O到直线的距离为d,半径为r.d,r是方程的两根,且已知直线与⊙O相切,求m的值?教后评价主备人:审核人:时间:年学期课型新授年级九课时科目数学课题2.5.2圆的切线学习目标1、理解切线的判定定理.2、会利用切线的判定定理解决一些实际问题.重点难点会利用切线的判定定理解决一些实际问题导学过程主讲人备课自主预学情趣导入:明确目标,个性导入自主预习单:1、思考:已知圆和圆上一点,如何过这个点做圆的切线?动手试一试.2、判断:(1)经过半径的一个端点,并且垂直于这条半径的直线是圆的切线()(2)若一条直线与圆的半径垂直,则这条直线是圆的切线()(3)以直角边为半径的圆一定与另一条直角边相切()(4)以等腰直角三角形斜边中点为圆心,直角边的一半为半径的圆,与两直角边相切()互助探学探究导研:合作探究,互助研讨[问题A]:理解切线的判定定理.1、如图:在⊙O中,经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?______,直线l和⊙O有什么位置关系?_________.2、归纳:切线的判定定理:经过半径的并且这条半径的是圆的切线.注:切线需满足两条:①_______________;②________________定理的几何语言如图,∵,,∴.总结:判定一条直线是圆的切线的三种方法:(1)切线定义;(2)d=r;(3)切线的判定定理[问题B]:会利用切线的判定定理解决一些实际问题.如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.总结导评:精讲点拨,归纳总结提高拓学应用导思:学以致用,巩固拓展1、下列说法正确的是()A.与圆有公共点的直线是圆的切线B.和圆心距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC(2)求证:DE为⊙O的切线.(3)若⊙O的半径为5,∠BAC=60°,求DE的长OO·ABCDEO教后评价主备人:审核人:时间:年学期课型新授年级九课时科目数学课题2.5.3切线长定理学习目标掌握切线长的概念及切线长定理重点难点切线长定理导学过程主讲人备课自主预学情趣导入:明确目标,个性导入自主预习单:如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.互助探学探究导研:合作探究,互助研讨探究一:掌握切线长的概念如图,PA,PB是⊙O的两条切线,切点分别为A,B.在半透明的纸上画出这个图形,沿直线PO将图形对折,说明图中的PA与PB,与有什么关系?线段PA与PB的数量关系PA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微信公众平台托管代运营合同书
- 资质合并吸收合同最终版本合同范文
- 生鲜乳运输合同
- 供应链代理销售合同
- 黄石市销售行业业务代表合同
- 月嫂家政服务合同签订与签订流程解读3篇
- 轧花厂租赁承包合同
- 铝合金施工质量控制流程合同3篇
- 2024年版跨境电商平台服务合同
- 备课组工作计划
- 《东南亚经济与贸易》习题集、案例、答案、参考书目
- 烧烤店装修合同范文模板
- 2024年中国樱桃番茄种市场调查研究报告
- 数据分析基础与应用指南
- 人教版(PEP)小学六年级英语上册全册教案
- 广东省广州市海珠区2023-2024学年六年级上学期月考英语试卷
- 消防水域救援个人防护装备试验 大纲
- 机电样板施工主要技术方案
- 涉税风险管理方案
- 青岛市2022-2023学年七年级上学期期末道德与法治试题
- 高空作业安全免责协议书范本
评论
0/150
提交评论