版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福州仓山区六校联考八年级数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各组数不能作为直角三角形三边长的是()A.3,4,5 B.,, C.0.3,0.4,0.5 D.30,40,502.不等式的解集为()A. B. C. D.3.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A.60° B.70° C.80° D.90°4.下列说法正确的是()A.同位角相等B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系C.三角形的三条高线一定交于三角形内部同一点D.三角形三条角平分线的交点到三角形三边的距离相等5.估算的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间6.从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙 B.丙、丁 C.甲、丁 D.乙、丙7.下列命题正确的个数是()(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A.1 B.2 C.3 D.48.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定9.如图,在已知的△ABC中,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径作弧,两弧相交于两点EF;②作直线EF交BC于点D连接AD.若AD=AC,∠C=40°,则∠BAC的度数是()A.105° B.110° C.I15° D.120°10.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况二、填空题(每小题3分,共24分)11.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.12.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.13.二次三项式是完全平方式,则的值是__________.14.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.15.某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.16.已知的面积为27,如果,,那么的周长为__________.17.计算:25的结果是_____.18.如图,直线与坐标轴相交于点,将沿直线翻折到的位置,当点的坐标为时,直线的函数解析式是_________________.三、解答题(共66分)19.(10分)如图1,BD是矩形ABCD的对角线,,.将沿射线BD方向平移到的位置,连接,,,,如图1.(1)求证:四边形是平行四边形;(1)当运动到什么位置时,四边形是菱形,请说明理由;(3)在(1)的条件下,将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.20.(6分)如图,在平行四边形中,,,分别是,的中点,.(1)求证:四边形是菱形;(2)求的长.21.(6分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的直角边都是无理数;(3)在图3中,画一个正方形,使它的面积是1.22.(8分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?23.(8分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.24.(8分)如图,平面直角坐标系中,点A(−6,0),点B(0,18),∠BAO=60°,射线AC平分∠BAO交y轴正半轴于点C.(1)求点C的坐标;(2)点N从点A以每秒2个单位的速度沿线段AC向终点C运动,过点N作x轴的垂线,分别交线段AB于点M,交线段AO于点P,设线段MP的长度为d,点P的运动时间为t,请求出d与t的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,将△ABO沿y轴翻折,点A落在x轴正半轴上的点E,线段BE交射线AC于点D,点Q为线段OB上的动点,当△AMN与△OQD全等时,求出t值并直接写出此时点Q的坐标.25.(10分)如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标;(3)请画出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.26.(10分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】选项A,,三角形是直角三角形;选项B,,三角形不是直角三角形;选项C,,三角形是直角三角形;选项D,,三角形是直角三角形;故选B.2、B【解题分析】
先去括号,再移项,然后合并同类项,最后系数化为1,即可得出答案.【题目详解】解:6x+15>8x+66x-8x>6-15-2x>-9x<4.5因此答案选择B.【题目点拨】本题主要考查了一元一次不等式的解法:去分母,去括号,移项,合并同类项,系数化为1.3、B【解题分析】点E是斜边AB的中点,ED⊥AB,∠B=∠DAB,∠DAB=2x,故2x+2x+5x=90°,故x=10°,∠BAC=70°.故选B.4、D【解题分析】
利用平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质分别判断后即可确定正确的选项.【题目详解】A、两直线平行,同位角相等,故错误;B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;C、钝角三角形的三条高线的交点位于三角形的外部,故错误;D、三角形三条角平分线的交点到三角形三边的距离相等,正确,故选:D.【题目点拨】本题考查了平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质等知识,属于基础性的定义及定理,比较简单.5、C【解题分析】
先估算出的大小,然后求得的大小即可.【题目详解】解:9<15<16,3<<4,5<<6,故选C.【题目点拨】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.6、C【解题分析】
方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.【题目详解】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.【题目点拨】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【解题分析】
根据完全平方式、正六边形、平行四边形的判定判断即可【题目详解】(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;故选C【题目点拨】此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键8、B【解题分析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B9、D【解题分析】
利用基本作图得到EF垂直平分AB,根据垂直平分线的性质可得DA=DB,根据等腰三角形的性质可得∠B=∠DAB,然后利用等腰三角形的性质可得∠ADC=40°,根据三角形外角性质可得∠B=20°,根据三角形内角和定理即可得答案.【题目详解】由作法得EF垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD=AC,∠C=40°,∴∠ADC=∠C=40°,∵∠ADC=∠B+∠DAB,∴∠B=∠ADC=20°,∴∠BAC=180°-∠B-∠C=120°.故选:D.【题目点拨】本题考查的是基本尺规作图和线段垂直平分线的性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等的性质是解题的关键.10、B【解题分析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.二、填空题(每小题3分,共24分)11、14【解题分析】
根据甲权平均数公式求解即可.【题目详解】(4×13+7×14+4×15)÷15=14岁.故答案为:14.【题目点拨】本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).12、.【解题分析】
如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【题目详解】如图,连接BD交AC于E.∵四边形ABCD是菱形,∴AC⊥BD,AE=EC,∵OA=2OC,AC=3,∴CO=DO=2EO=1,AE=,∴EO=,DE=EB=,∴AD=.故答案为.【题目点拨】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.13、17或-7【解题分析】
利用完全平方公式的结构特征判断即可确定出k的值.【题目详解】解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14、【解题分析】
根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.【题目详解】解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,直线AC的解析式为,当时,,当时,,点A的坐标为,点C的坐标为,点D的坐标为,点B的坐标为,点的坐标为,设过点B和点的直线解析式为,,解得,,过点B和点的直线解析式为,当时,,即点P的坐标为,.故答案为.【题目点拨】本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、众数【解题分析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.【题目详解】某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.故答案为:众数.【题目点拨】本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.16、1【解题分析】
过点A作交BC于点E,先根据含1°的直角三角形的性质得出,设,则,根据的面积为27建立方程求出x的值,进而可求出AB,CD的长度,最后利用周长公式求解即可.【题目详解】过点A作交BC于点E,∵,,.∵,∴设,则.∵的面积为27,,即,解得或(舍去),∴,∴的周长为.故答案为:1.【题目点拨】本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.17、1【解题分析】
根据算术平方根的定义,直接得出25表示21的算术平方根,即可得出答案.【题目详解】解:∵25表示21的算术平方根,且5∴25故答案是:1.【题目点拨】此题主要考查了算术平方根的定义,必须注意算术平方根表示的是一个正数的平方等于某个数.18、.【解题分析】
首先设A(0,y),B(x,0)进而计算AC的长度,可列方程求解y的值,同理计算BC的长度列出方程即可计算x的值,进而确定直线AB的解析式.【题目详解】解:设A(0,y),B(x,0)则AC2=,根据题意OA=AC=y所以可得解得y=2再根据BC2=,根据题意OB=BC=x所以可得解得x=2所以可得A(0,2)B(2,0)采用待定系数法可得即所以一次函数的解析式为故答案为【题目点拨】本题主要考查一次函数的解析式求解,关键在于利用直角三角形,求解A、B点的坐标.三、解答题(共66分)19、(1)见解析;(1)当运动到BD中点时,四边形是菱形,理由见解析;(3)或.【解题分析】
(1)根据平行四边形的判定定理一组对边相等一组对角相等,即可解答(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【题目详解】(1)∵BD是矩形ABCD的对角线,,∴,由平移可得,,,∴∴四边形是平行四边形,(1)当运动到BD中点时,四边形是菱形理由:∵为BD中点,∴中,,又∵,∴是等边三角形,∴,∴四边形是菱形;(3)将四边形ABC′D′沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为或.【题目点拨】此题考查平移的性质,菱形的判定与性质,矩形的性质,图形的剪拼,解题关键在于掌握各性质定理20、(1)见解析;(2)【解题分析】
(1)由平行四边形的性质得出AD∥BC,AD=BC,证出DE∥CF,DE=CF,得出四边形CDEF是平行四边形,证出CD=CF,即可得出四边形CDEF是菱形;
(2)连接DF,证明△CDF是等边三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,证出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,
∵E,F分别是AD,BC的中点,
∴DE=AD,CF=BC,
∴DE∥CF,DE=CF,
∴四边形CDEF是平行四边形,
又∵BC=2CD,
∴CD=CF,
∴四边形CDEF是菱形;(2)如图,连接,,,是等边三角形,,,.是的中点,,.,.,.【题目点拨】本题考查的是菱形的判定与性质、平行四边形的判定和性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.21、(1)见解析(2)见解析(3)见解析【解题分析】
(1)根据题意可画出三边长分别为3,4,5的三角形即可;(2)根据题意及勾股定理即可画出边长为、、的直角三角形;(3)根据题意及正方形面积的特点即可画出边长为的正方形.【题目详解】(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.
【题目点拨】此题主要考查网格与图形,解题的关键是熟知勾股定理的运用.22、(1);(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【解题分析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【题目详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),把(1,300)、(10,120)带入y=ax+b中得,解得,∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);把(10,120),(30,400)代入y=mx+n中得,解得,∴线段BC表示的函数关系式为y=14x-20(10<x≤30),综上所述.(2)由题意可知单件商品的利润为10-6=4(元/件),∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;当10<x≤30时,w=4×(14x-20)=56x-80,∴,日销售利润不超过1040元,即w≤1040,∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;当10<x≤30时,w=56x-80≤1040,解得x≤20,∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【题目点拨】本题考查应用题解方程,解题的关键是读懂题意.23、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣3.【解题分析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=3FH,CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,得出EH=4+x=23x+3x,解得:x=3﹣1,求出FH=3x=3﹣3即可.【题目详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,∠B∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE=GF,∠FGH=30°,∴FG=2FH,GH=3FH,∵∠FCH=∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,∵BC=AB=4,∴CE=BC+BE=4+2x,∴EH=4+x=23x+3x,解得:x=3﹣1,∴FH=3x=3﹣3,即点F到BC的距离为3﹣3.【题目点拨】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24、(1)(0,6);(2)d=3t(0<t⩽6);S=4t-32(t>8);(3)t=3,此时Q(0,6);t=3,此时Q(0,18)【解题分析】
(1)首先证明∠BAO=60°,在Rt△ACO中,求出OC的长即可解决问题;(2)理由待定系数法求出直线AB的解析式,再求出点P的坐标即可解决问题;(3)由(1)可知,∠NAM=∠NMA=30°,推出△AMN是等腰三角形,由当△AMN与△OQD全等,∠DOC=30°,①当∠QDO=30°时,△AMN与△OQD全等,此时点Q与C重合,当AN=OC时,△ANM≌△OQC,②当∠OQD=30°,△AMN与△OQD全等,此时点Q与B重合,OD=AN=6,分别求出t的值即可;【题目详解】(1)在Rt△AOB中,∵OA=6,OB=18,∴tan∠BAO==,∴∠BAO=60°,∵AC平分∠BAO,∴∠CAO=∠BAO=30°,∴OC=OA⋅tan30°=6⋅=6,∴C(0,6).(2)如图1中,设直线AB的解析式为y=kx+b,则有,∴,∴直线AB的解析式为y=x+18,∵AN=2t,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 挖掘机驾驶员合同范本格式模板示例
- 民间借款协议书借款合同
- 食品销售代理合同范本
- 水泥砖批量订购合同
- 庆典活动服务合同
- 会计事务处理协助合同
- 产品订购合约样本
- 面料购销合约
- 股份制公司合同范本
- 热处理生产线承包合同
- DB11T 854-2023 占道作业交通安全设施设置技术要求
- 高考生物选择性必修1稳态与调节基础知识填空默写(每天打卡)
- 2022版《义务教育教学新课程标准》解读课件
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- 《个人防护用品PPE》ppt课件
- 苏州商业市场市调简析报告
- 论现代企业人力资源管理中激励机制的应用以腾讯公司为例
- CRRT治疗剂量的计算
- (完整)风景园林概论知识点,推荐文档
- 水稳施工方案(完整版)
评论
0/150
提交评论