2024届贵州省黔东南州数学八下期末预测试题含解析_第1页
2024届贵州省黔东南州数学八下期末预测试题含解析_第2页
2024届贵州省黔东南州数学八下期末预测试题含解析_第3页
2024届贵州省黔东南州数学八下期末预测试题含解析_第4页
2024届贵州省黔东南州数学八下期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省黔东南州数学八下期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在某次实验中,测得两个变量m和v之间的4组对应数据如右表,则m与v之间的关系最接近于下列各关系式中的()m1234v2.014.910.0317.1A. B. C. D.2.如图,点是矩形的对角线的中点,点是边的中点,若,,则的长为()A.3 B.4 C.4.5 D.53.已知函数是反比例函数,则此反比例函数的图象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限4.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6B.4.5C.2.4D.85.下列对一次函数y=﹣2x+1的描述错误的是()A.y随x的增大而减小B.图象经过第二、三、四象限C.图象与直线y=2x相交D.图象可由直线y=﹣2x向上平移1个单位得到6.若点在第四象限,则的取值范围是()A. B. C. D.7.如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)()A.10cm B.12m C.14cm D.15cm8.如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则()A.15.5 B.16.5 C.17.5 D.18.59.电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是()A. B.C. D.10.一种药品原价每盒元,经过两次降价后每盒元,两次降价的百分率相同,设每次降价的百分率为,则符合题意的方程为()A. B. C. D.11.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为()A.(-2,3) B.(2,-3) C.(3,-2) D.(-3,2)12.菱形具有而矩形不一定具有的性质是()A.对角相等 B.四条边都相等C.邻角互补 D.对角线互相平分二、填空题(每题4分,共24分)13.不等式组恰有两个整数解,则实数的取值范围是______.14.已知点(2,7)在函数y=ax+3的图象上,则a的值为____.15.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.16.若的三边长分别是6、8、10,则最长边上的中线长为______.17.等腰三角形的两边长分别为4和9,则第三边长为18.用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.三、解答题(共78分)19.(8分)化简求值:,从的值:0,1,2中选一个代入求值.20.(8分)化简:(1)(2)21.(8分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为;(2)扇形统计图中植树为1株的扇形圆心角的度数为;(3)该班同学植树株数的中位数是(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果22.(10分)如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?23.(10分)在直角坐标系中,反比例函数y=(x>0),过点A(3,4).(1)求y关于x的函数表达式.(2)求当y≥2时,自变量x的取值范围.(3)在x轴上有一点P(1,0),在反比例函数图象上有一个动点Q,以PQ为一边作一个正方形PQRS,当正方形PQRS有两个顶点在坐标轴上时,画出状态图并求出相应S点坐标.24.(10分)解不等式组并将解集在数轴上表示出来.25.(12分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).国学知识现场写作经典诵读甲867090乙868090丙868590(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.26.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据表格得到对应v的大致取值,找到规律即可求解.【题目详解】根据表格可得到m,v的大致值为m=1时,v=12+1,m=2时,v=22+1,m=3时,v=32+1,m=4时,v=42+1,故最接近故选B.【题目点拨】此题主要考查函数的解析式,解题的关键是根据题意发现规律进行求解.2、D【解题分析】

由三角形的中位线定理可得CD=AB=6,由勾股定理可求AC的长,即可求OB的长.【题目详解】∵四边形ABCD是矩形

∴AB=CD,∠ABC=90°,AO=OC=OB

∵AO=OC,AM=MD

∴CD=2OM=6=AB,

∴AC==10

∴OB=5

故选:D.【题目点拨】此题考查矩形的性质,三角形中位线定理,勾股定理,熟练运用矩形的性质是解题的关键.3、A【解题分析】

首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【题目详解】根据已知条件,得即∴函数解析式为∴此反比例函数的图象在第一、三象限故答案为A.【题目点拨】此题主要考查反比例函数的性质,熟练掌握,即可解题.4、D【解题分析】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.5、B【解题分析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.故选B.点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.6、D【解题分析】

根据第四象限内点的坐标特征为(+,-)列不等式求解即可.【题目详解】由题意得2m-1<0,∴.故选D.【题目点拨】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.7、D【解题分析】

要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【题目详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB==15厘米.故选:D.【题目点拨】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.8、C【解题分析】

根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则=+即可求解.【题目详解】解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵=2,根据相似三角形的面积比等于相似比的平方,∴:=,即==12.5,∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,∴:=DF:FB=2:5,即==5,∴=+=12.5+5=17.5,故选C.【题目点拨】本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.9、C【解题分析】

本题考查了一次函数的解析式,设为,把k和b代入即可.【题目详解】设函数解析式为:,由题意得,k=0.2,b=28,∴函数关系式为:.故选:C.【题目点拨】本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.10、D【解题分析】

由题意可得出第一次降价后的价格为,第二次降价后的价格为,再根据两次降价后的价格为16元列方程即可.【题目详解】解:设每次降价的百分率为,由题意可得出:.故选:D.【题目点拨】本题考查的知识点是一元二次方程的实际应用,找准题目中的等量关系是解此题的关键.11、B【解题分析】试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).故选B.考点:平面直角坐标系12、B【解题分析】

根据菱形和矩形的性质,容易得出结论.【题目详解】解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;故选:B.【题目点拨】本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.二、填空题(每题4分,共24分)13、【解题分析】

首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【题目详解】解:对于,解不等式①得:,解不等式②得:,因为原不等式组有解,所以其解集为,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a应满足,解得.故答案为.【题目点拨】本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.14、1.【解题分析】

利用待定系数法即可解决问题;【题目详解】∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,故答案为:1.【题目点拨】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.15、10,3.【解题分析】

过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【题目详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【题目点拨】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.16、1【解题分析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【题目详解】解:,,,这个三角形是直角三角形,斜边长为10,最长边上的中线长为1,故答案为:1.【题目点拨】本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、9【解题分析】试题分析:∵等腰三角形的两边长分别为4和9,∴分两种情况(1)腰为4,底边为9,但是4+4<9,所以不能组成三角形(2))腰为9,底边为4,符合题意,所以第三边长为9.考点:等腰三角形的概念及性质.18、1cm【解题分析】

根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.【题目详解】解:设截去的小正方形的边长为,由题意得,,整理得,解得.当时,<0,<0,不符合题意,应舍去;当时,>0,>0,符合题意,所以=1.故截去的小正方形的边长为1cm.故答案为:1cm【题目点拨】本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.三、解答题(共78分)19、2.【解题分析】

原式括号中两项通分并利用除法法则计算,约分得到最简结果,把x=2代入计算即可求出值,注意x=0或x=1分母没有意义.【题目详解】,取代入得:原式.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1);(2).【解题分析】

(1)根据平方差公式和提公因式法,对分式进行化简即可(2)利用完全平方公式和平方差公式,进行化简,再对括号里面的分式进行通分约分,再把除法转化为乘法,即可解答【题目详解】(1)原式或:原式(2)原式【题目点拨】此题考查分式的化简求值,掌握运算法则是解题关键21、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.【解题分析】

(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;(2)用360°乘以植树1株的人数所占的百分比即可得;(3)根据中位数的定义可先计算植树的总人数,然后写出即可;(1)根据平均数的定义判断计算即可.【题目详解】解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;(3)植树的总人数为:20÷10%=50,∴该班同学植树株数的中位数是2;(1)小明的计算不正确,正确的计算为:=2.1.【题目点拨】本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.22、(1)自变量是时间;(2)大约在3时水位最深,最深是8米;(3)在0到3时和9到12时,水位是随着时间推移不断上涨的.【解题分析】

(1)根据函数图象,可以直接写出自变量;

(2)根据函数图象中的数据可以得到大约在什么时间水位最深,最深是多少;

(3)根据函数图象,可以写出大约在什么时间段水位是随着时间推移不断上涨的.【题目详解】(1)由图象可得,在这一问题中,自变量是时间;(2)大约在3时水位最深,最深是8米;(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.【题目点拨】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1);(2)当时,自变量的取值范围为;(3)①,②,③,④,.【解题分析】

(1)把A的坐标代入解析式即可(2)根据题意可画出函数图像,观察函数图象的走势即可解答(3)根据题意PQ在不同交点,函数图象与正方形的位置也不一样,可分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论