2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题含解析_第1页
2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题含解析_第2页
2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题含解析_第3页
2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题含解析_第4页
2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省信阳市浉河区数学八年级第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.米 B.米 C.米 D.米2.甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是()A.甲 B.乙 C.甲和乙一样 D.无法确定3.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是()A. B. C.2 D.24.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个5.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(

)A.

B.C.

D.6.环保部门根据我市一周的检测数据列出下表.这组数据的中位数是A. B. C. D.7.在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:18.一元二次方程根的情况为()A.有两个相等的实数根 B.有两个正实数根C.有两个不相等的实数根 D.有两个负实数根9.如图,四边形为平行四边形,延长到点,使,连接,,.添加一个条件,不能使四边形成为矩形的是()A. B. C. D.10.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.每一条边都相等且每一个角也都相等的四边形是正方形D.平行四边形的对角线相等二、填空题(每小题3分,共24分)11.如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.12.已知,,则______.13.已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.14.已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.15.如图,中,是的中点,平分,于点,若,,则的长度为_____.16.计算:=______________17.函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.18.关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.三、解答题(共66分)19.(10分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?20.(6分)四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF,图1图2(1)如图1,当点E与点A重合时,则BF=_____;(2)如图2,当点E在线段AD上时,AE=1,①求点F到AD的距离;②求BF的长.21.(6分)某商场计划购进一批自行车.男式自行车价格为元/辆,女式自行车价格为元/辆,要求男式自行车比女式单车多辆,设购进女式自行车辆,购置总费用为元.(1)求购置总费用(元)与女式单车(辆)之间的函数关系式;(2)若两种自行车至少需要购置辆,且购置两种自行车的费用不超过元,该商场有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?22.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD.求∠BDC的度数.23.(8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.24.(8分)某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.25.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有.∴.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得=,=;(2)利用所探索的结论,找一组正整数,填空:+=(+)2;(3)若,且均为正整数,求的值.26.(10分)先化简,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:5纳米=5×10﹣9,故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【解题分析】

方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.【题目详解】∵,∴∴甲同学的成绩比较稳定故选:A.【题目点拨】本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.3、B【解题分析】

由已知条件可得EN与EF的长,进而可得Rt△NEF的面积,即可求解四边形MENF的面积.【题目详解】解:∵E,F为BD的三等分点,∴DE=EF=BF,∵AE⊥BD,CF⊥BD,∴EN∥FC,∴EN是△DFC的中位线,∴EN=FC.∵在Rt△DCF中,∠BDC=30°,DC=4,∴FC=2,∴EN=1,∴在Rt△DEN中,∠EDN=30°,∴DN=2EN=2,DE==,∴EF=DE=,∴S△ENF=×1×=,四边形MENF的面积=×2=.故选B.【题目点拨】本题考查了平行四边形的性质,三角形中位线定理.4、B【解题分析】

首先把分式转化为,则原式的值是整数,即可转化为讨论的整数值有几个的问题.【题目详解】,当或或或时,是整数,即原式是整数.当或时,x的值不是整数,当等于或是满足条件.故使分式的值为整数的x值有4个,是2,0和.故选B.【题目点拨】本题主要考查了分式的值是整数的条件,把原式化简为的形式是解决本题的关键.5、D【解题分析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.6、C【解题分析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【题目详解】根据中位数的概念,可知这组数据的中位数为:21故答案选:C【题目点拨】本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.7、D【解题分析】

根据平行四边形的两组对角分别相等判定即可【题目详解】解:根据平行四边形的两组对角分别相等,可知D正确.

故选:D.【题目点拨】此题主要考查了平行四边形的性质,熟知平行四边形的两组对角分别相等这一性质是解题的关键.8、C【解题分析】

根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.【题目详解】解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,

∴方程x2+2x-1=0有两个不相等的实数根.

故选:C.【题目点拨】本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9、C【解题分析】

先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;C、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选:C.【题目点拨】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.10、C【解题分析】

根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质判断即可.【题目详解】解:A、对角线平分且相等的四边形是矩形,错误;B、对角线互相垂直平分的四边形是菱形,错误;C、每一条边都相等且每一个角也都相等的四边形是正方形,正确;D、矩形的对角线相等,错误;故选:C.【题目点拨】此题考查正方形的判定,关键是根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质解答.二、填空题(每小题3分,共24分)11、1【解题分析】

证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【题目详解】解:∵CF∥AB,

∴∠ECF=∠EBD.

∵E是BC中点,

∴CE=BE.

∵∠CEF=∠BED,

∴△CEF≌△BED(ASA).

∴CF=BD.

∴四边形CDBF是平行四边形.

作EM⊥DB于点M,

∵四边形CDBF是平行四边形,,

∴BE=,DF=2DE,

在Rt△EMB中,EM2+BM2=BE2且EM=BM

∴EM=1,在Rt△EMD中,

∵∠EDM=30°,

∴DE=2EM=2,

∴DF=2DE=1.

故答案为:1.【题目点拨】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,12、-5【解题分析】

根据比例的性质,把写成的形式,然后代入已知数据进行计算即可得解.【题目详解】设由已知则故-5【题目点拨】本题主要考查了比例的基本性质。13、14【解题分析】

根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.【题目详解】解:∵的面积为∴=解得=2根据勾股定理得:==7则代数式==2×7=14故答案为:14【题目点拨】本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.14、1【解题分析】

依据直线y=kx+b与y=2x+1平行,且经过点(-3,4),即可得到直线解析式为y=2x+10,进而得到该直线可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.【题目详解】∵直线y=kx+b与y=2x+1平行,∴k=2,又∵直线经过点(-3,4),∴4=-3×2+b,解得b=10,∴该直线解析式为y=2x+10,∴可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.故答案为:1.【题目点拨】本题主要考查了一次函数图象与几何变换,解决问题的关键是利用待定系数法求得直线解析式.15、1.【解题分析】

延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.【题目详解】解:如图,延长BD交AB于F,∵AD平分∠BAC,∴∠BAD=∠FAD,∵BD⊥AD,∴∠ADB=∠ADF=90°,在△ADF和△ADB中∴△ADF≌△ADB(ASA),∴AF=AB,BD=FD,∴CF=AC-AB=6-4=2cm,又∵点E为BC的中点,∴DE是△BCF的中位线,.【题目点拨】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.16、2【解题分析】

先将二次根式化为最简,然后合并同类二次根式即可.【题目详解】解:原式=.故答案为:2.【题目点拨】本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.17、y=2x-6【解题分析】

根据“左加右减,上加下减”的原则进行解答即可.【题目详解】解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.故答案为y=2x-6.【题目点拨】本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.18、【解题分析】

整理成一般式后,利用因式分解法求解可得.【题目详解】解:整理得:x2+8x+12=0,

(x+2)(x+1)=0,

x+2=0,x+1=0,

x1=-2,x2=-1.故答案为:.【题目点拨】本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.三、解答题(共66分)19、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.【解题分析】试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.试题解析:解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.由题意得:,解得:答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分当一名熟练工一个月加工型服装件时,则还可以加工型服装件.又∵≥,解得:≥,随着的增大则减小∴当时,有最大值.∴该服装公司执行规定后违背了广告承诺..考点:方程组,函数应用20、(1)45;(2)①点F到AD的距离为1;②BF=74【解题分析】

(1)根据勾股定理依次求出AC、CF、BF长即可;(2)①过点F作FH⊥AD,由正方形的性质可证ΔECD≅ΔFEH,根据全等三角形的性质可得FH的长;②延长FH交BC的延长线于点K,求出BK、FK的长,根据勾股定理可得解.【题目详解】解:(1)当点E与点A重合时,点C、D、F在一条直线,连接CF,在RtΔABC中,AC=A(2)①过点F作FH⊥AD交AD的延长线于点H,如图所示∵四边形CEFG是正方形,∴EC=EF,∠FEC=∴∠DEC+∠FEH=90又∵四边形ABCD是正方形,∴∠ADC=∴∠DEC+∠ECD=90∴∠ECD=∠FEH又∵∠EDC=∠FHE=90∴ΔECD≅ΔFEH∴FH=ED∵AD=4,AE=1,∴ED=AD-AE=4-1=3,∴FH=3,即点F到AD的距离为1.②延长FH交BC的延长线于点K,如图所示∴∠DHK=∠HDC=∠DCK=90∴四边形CDHK为矩形,∴HK=CD=4,∴FK=FH+HK=3+4=7,∵ΔECD≅ΔFEH,∴EH=CD=AD=4,∴AE=DH=CK=1,∴BK=BC+CK=4+1=5,在RtΔBFK中,【题目点拨】本题综合考查了四边形及三角形,主要涉及的知识点有勾股定理、正方形的性质、矩形的判定与性质、全等三角形的证明与性质,灵活利用勾股定理求线段的长是解题的关键.21、(1);(2)共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元【解题分析】

(1)根据题意即可列出总费用y(元)与女式单车x(辆)之间的函数关系式;(2)根据题意列出不等式组,求出x的取值范围,再根据(1)的结论与一次函数的性质解答即可.【题目详解】解:(1)根据题意,得:即(2)由题意可得:解得:∵为整数∴,,,,共有种方案由(1)得:∵∴y随得增大而增大∴当时,y最小故共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元.【题目点拨】本题主要考查一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.22、(1)证明见解析;(2)90°.【解题分析】试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中,CB=CF∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE∴△BCD≌△FCE(SAS).(2)、由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.23、(1)见解析;(2)6或【解题分析】

(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【题目详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论