广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题含解析_第1页
广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题含解析_第2页
广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题含解析_第3页
广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题含解析_第4页
广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市邕宁区中学和中学2024届数学八年级第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条2.对角线相等且互相平分的四边形是()A.一般四边形 B.平行四边形 C.矩形 D.菱形3.下列不等式的变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是()A.165cm B.170cm C.175cm D.180cm5.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九边形 B.八边形 C.七边形 D.六边形6.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<17.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.48.如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A. B.C. D.9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是()A.4 B.3 C.2 D.111.小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是().A.平均数为251mL B.中位数为249mLC.众数为250mL D.方差为12.如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是()A.①②④ B.②③ C.①③④ D.①④二、填空题(每题4分,共24分)13.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.14.计算:π0-()-1=______.15.在一次捐款活动中,某班第一小组8名同学捐款的金额单位:元如下表所示:这8名同学捐款的平均金额为______元金额元56710人数232116.面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.17.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为.18.如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________三、解答题(共78分)19.(8分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工人,每人所创年利润的众数是万元,平均数是万元,中位数是万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?20.(8分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.(1)求A、B两种型号电脑每台价格各为多少万元?(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?22.(10分)分解因式:(1);(2).23.(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.(1)点的坐标___________;(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.24.(10分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级889490948494999499100八年级84938894939893989799整理数据:按如下分数段整理数据并补全表格:成绩x人数年级七年级1153八年级44分析数据:补全下列表格中的统计量:统计量年级平均数中位数众数方差七年级93.69424.2八年级93.79320.4得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)25.(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为cm.26.计算:(1)(2)

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【题目详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【题目点拨】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.2、C【解题分析】

由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;【题目详解】∵四边形的对角线互相平分,∴此四边形是平行四边形;又∵对角线相等,∴此四边形是矩形;故选B.【题目点拨】考查矩形的判定,常见的判定方法有:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.3、D【解题分析】

根据不等式的基本性质进行判断。【题目详解】A.∴,故A正确;B.,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;C.,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;D.,在不等式两边同时除以(-3)则不等号改变,∴,故D错误所以,选项D不正确。【题目点拨】主要考查了不等式的基本性质:1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。4、B【解题分析】

以腿长103cm视为从肚脐至足底的高度,求出身高下限;)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限,由此确定身高的范围即可得到答案.【题目详解】(1)以腿长103cm视为从肚脐至足底的高度,求出身高下限:,(2)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限:①咽喉至肚脐:cm,②肚脐至足底:cm,∴身高上限为:25+40+105=170cm,∴身高范围为:,故选:B.【题目点拨】此题考查黄金分割,正确理解各段之间的比例关系,确定身高的上下限,即可得到答案.5、A【解题分析】

根据正多边形每个内角度数的求算公式:建立方程求解即可.【题目详解】正多边形每个内角的度数求算公式:,建立方程得:解得:故答案选:A【题目点拨】本题考查正多边形的内角与边数,掌握相关的公式是解题关键.6、B【解题分析】

根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【题目详解】解:根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,∴不等式组的解集为:x<﹣2,故选:B.【题目点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.7、C【解题分析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=1,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=1.∴EP+FP的最小值为1.故选C.考点:菱形的性质;轴对称-最短路线问题8、D【解题分析】

根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D【题目详解】解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系

综上所述故选:D.【题目点拨】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.9、A【解题分析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【题目详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【题目点拨】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.10、A【解题分析】

由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【题目详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED=60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【题目点拨】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.11、D【解题分析】试题分析:中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选D.考点:平均数、中位数、众数、方差的定义.12、D【解题分析】

先判断出CE=ON,AD=OM,再判断出CE=AD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OB⊥AC,OB与AC互相平分即可得出④正确.【题目详解】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,

∵AM⊥x轴,CM⊥x轴,OB⊥MN,

∴四边形ONCE和四边形OMAD是矩形,

∴ON=CE,OM=AD,

∵OB是▱OABC的对角线,

∴△BOC≌△OBA,

∴S△BOC=S△OBA,

∵S△BOC=OB×CE,S△BOA=OB×AD,

∴CE=AD,

∴ON=OM,故①正确;

在Rt△CON和Rt△AOM中,ON=OM,

∵四边形OABC是平行四边形,

∴OA与OC不一定相等,

∴△CON与△AOM不一定全等,故②错误;

∵第二象限的点C在双曲线y=上,

∴S△CON=|k1|=-k1,

∵第一象限的点A在双曲线y=上,

S△AOM=|k2|=k2,

∴S阴影=S△CON+S△AOM=-k1+k2=(k2-k1),

故③错误;

∵四边形OABC是菱形,

∴AC⊥OB,AC与OB互相平分,

∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,

∴点A与点C关于y轴对称,故④正确,

∴正确的有①④,

故选:D.【题目点拨】本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CE=AD是解本题的关键.二、填空题(每题4分,共24分)13、.【解题分析】

解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是故答案为.【题目点拨】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14、-1【解题分析】

直接利用零指数幂和负整数指数幂的运算法则进行计算即可.【题目详解】原式=1-3=-1.故答案为:-1.【题目点拨】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.15、6.5【解题分析】

根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【题目详解】这8名同学捐款的平均金额为元,故答案为:.【题目点拨】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.16、84分【解题分析】

根据加权平均数的计算公式进行计算,即可得出答案.【题目详解】根据题意得:90×20%+80×40%+85×40%=84(分);故答案为84分.【题目点拨】本题考查的是加权平均数,熟练掌握加权平均数的计算公式是解题的关键.17、(-1,1).【解题分析】

解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,∠AOB=∠AOB′=45°,则点A的坐标是(1,1),OA=,又∠A′OB′=45°,所以∠A′OD=45°,OA′=,在RtΔA′OD中,cos∠A′OD=,所以OD=1,A′D=1,所以点A′的坐标是(-1,1).考点:1、旋转的性质;2、等腰三角形的性质.18、3或1【解题分析】

分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.【题目详解】解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,所以∠EAF不可能为90°,分两种情况讨论:①当∠AFE=90°时,如图1所示,根据折叠性质可知∠EFC=∠D=90°,∴A、F、C三点共线,即F点在AC上,∵四边形ABCD是矩形,∴AC=,∴AF=AC−CF=AC−CD=10−1=4,设DE=x,则EF=x,AE=8−x,在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,即(8−x)2=x2+42,解得x=3,即DE=3;②当∠AEF=90°时,如图2所示,则∠FED=90°,∵∠D=∠BCD=90°,DE=EF,∴四边形EFCD是正方形,∴DE=CD=1,故答案为:3或1.【题目点拨】本题主要考查了翻折变换,以矩形为背景考查了勾股定理、折叠的对称性,同时考查了分类讨论思想,解决这类问题首先清楚折叠能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列方程求出答案.三、解答题(共78分)19、(1)补图见解析;(2)50;8;8.12;8;(3)384【解题分析】试题分析:(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.试题解析:(1)3万元的员工的百分比为:1-36%-20%-12%-24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人)(2)抽取员工总数为:4÷8%=50(人)每人所创年利润的众数是8万元,平均数是:150(3)1200×10+650答:在公司1200员工中有384人可以评为优秀员工.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.20、(1)80分;(2)小王在期末应该至少考85分才能达到优秀.【解题分析】分析:(1)小张期末评价成绩=(小张完成作业分+小张的单元检测+小张期末考试分)÷3,

(2)先根据小张期末评价成绩及小张三项成绩求出期末考试成绩的权重.因为期末评价成绩至少80分才是优秀,所以根据题意依据小王的期末评价成绩80分来计算他的期末考试成绩即可.详解:(1)小张的期末评价成绩==80,答:小张的期末评价成绩是80分;(2)依题意得,70×+90×+80×=81解得:m=7,经检查,m=7是所列方程的解.设小王期末考试分数为x,依题意列方程得60×+75×+x=80,解得:x=84≈85,答:小王在期末应该至少考85分才能达到优秀.点睛:本题考查的知识点是平均数和加权平均数的计算,比较基础,注意计算准确.21、(1)A、B两种型号电脑每台价格分别是0.1万元和0.4万元;(2)最多可购买A种型号电脑12台.【解题分析】

(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程,解方程即可求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据“用不多于9.2万元的资金购进这两种电脑20台”列出不等式,解不等式即可求解.【题目详解】(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据题意得:,解得:x=0.1.经检验:x=0.1是原方程的解,x﹣0.1=0.4答:A、B两种型号电脑每台价格分别是0.1万元和0.4万元.(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据题意得:0.1y+0.4(20﹣y)≤9.2.解得:y≤12,∴最多可购买A种型号电脑12台.答:最多可购买A种型号电脑12台.【题目点拨】本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.22、(1)(2)【解题分析】

(1)先提公因式2,再利用完全平方公式进行分解即可;(2)先提公因式(x-y),再利用平方差公式进行分解即可;【题目详解】解:(1).(2)..【题目点拨】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.23、(1)点坐标为;(2),;(3)存在,,或,或,【解题分析】

(1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;(2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;(3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.【题目详解】解:(1)过点、分别作轴、轴交于点、,,,,又,,,,,点坐标为;(2)秒后,点、,则,解得:,则,(3)存在,理由:设:点,点,,①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向左平移个单位、向上平移个单位为得到点,即:,,,解得:,,,故点、点;②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,该中点也是的中点,即:,,,解得:,,,故点、;③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,同理点向右平移个单位、向下平移个单位为得到点,即:,,,解得:,,,故点、点;综上:,或,或,【题目点拨】本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.24、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.【解题分析】

整理数据:根据八年级抽取10名学生的成绩,可得;

分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.【题目详解】解:整理数据:八年级段1人,段1人分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论