版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省苏州姑苏区五校联考八年级数学第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是()A.10 B.20 C.30 D.402.五箱梨的质量(单位:千克)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分是()A.20和18 B.20和19 C.18和18 D.19和183.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图像经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三5.已知实数满足,则代数式的值是()A.7 B.-1 C.7或-1 D.-5或36.若分式在实数范围内有意义,则的取值范围是()A. B. C. D.7.关于反比例函数,下列说法中错误的是()A.它的图象分布在一、三象限B.它的图象过点(-1,-3)C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小8.在函数y=1x+2中,自变量A.x≠﹣2 B.x>﹣2 C.x≠0 D.x≠29.函数中自变量的取值范围是()A. B. C. D.全体实数10.下列命题中正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形二、填空题(每小题3分,共24分)11.正比例函数y=mx经过点P(m,9),y随x的增大而减小,则m=__.12.已知下列函数:;;.其中是一次函数的有__________.(填序号)13.已知,为实数,且满足,则_____.14.如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.15.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为__________cm1.16.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.17.4的算术平方根是.18.若α是锐角且sinα=,则α的度数是.三、解答题(共66分)19.(10分)(1)已知,,求的值.(2)若,求的平方根.20.(6分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.21.(6分)如图,小明用自制的直角三角形纸板DEF测量树的高度1B.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.22.(8分)解不等式组23.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.24.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.(10分)已知关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.26.(10分)在平面直角坐标系xOy中,直线与x轴交于点A,与过点B(0,2)且平行于x轴的直线l交于点C,点A关于直线l的对称点为点D.(1)求点C、D的坐标;(2)将直线在直线l上方的部分和线段CD记为一个新的图象G.若直线与图象G有两个公共点,结合函数图象,求b的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.【题目详解】由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,∵∠C=90°,CD=1,∴CD=DE=1.∵AB=10,∴S△ABD=AB•DE=×10×1=2.故选B.【题目点拨】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.2、D【解题分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【题目详解】解:从小到大排列此数据为:1、1、19、20、21,数据1出现了三次最多,所以1为众数;19处在第3位是中位数.∴本题这组数据的中位数是19,众数是1.故选:D.【题目点拨】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、B【解题分析】试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.考点:根的判别式;点的坐标.4、A【解题分析】试题分析:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图像经过二、三、四象限.故选A.考点:一次函数的性质.5、A【解题分析】
将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.【题目详解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解;当x2﹣x=6时,x2﹣x+1=7,故选A.【题目点拨】本题考查了用因式分解法解一元二次方程,解本题的关键是把x2-x看成一个整体.6、A【解题分析】
根据分式有意义的条件即可求出答案.【题目详解】由分式有意义的条件可知:x-1≠0,∴x≠1,故选A.【题目点拨】考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.7、C【解题分析】试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y随x的增大而减小;当时,图象位于二、四象限,在每一象限,y随x的增大而增大.解:A、因为,所以它的图象分布在一、三象限,B、它的图象过点(-1,-3),D、当,y的值随x的增大而减小,均正确,不符合题意;C、当,y的值随x的增大而减小,故错误,本选项符合题意.考点:反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8、A【解题分析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x+1≠2,即可得答案.【题目详解】根据题意可得x+1≠2;解得x≠-1.故选A.【题目点拨】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为2.9、A【解题分析】
根据被开方数非负得到不等式x-2≥0,求解即可得到答案.【题目详解】由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.【题目点拨】此题考查函数自变量的取值范围,解题关键在于掌握运算法则.10、C【解题分析】
要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.两组对边平行的四边形是平行四边形;有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;有一组邻边相等的平行四边形是菱形;对角线互相垂直平分且相等的四边形是正方形.【题目详解】A.应为两组对边平行的四边形是平行四边形;B.有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;C.符合菱形定义;D.应为对角线互相垂直平分且相等的四边形是正方形.故选:C.【题目点拨】此题考查命题与定理,解题关键在于掌握各性质定理.二、填空题(每小题3分,共24分)11、-1【解题分析】
直接根据正比例函数的性质和待定系数法求解即可.【题目详解】解:把x=m,y=9代入y=mx中,
可得:m=±1,
因为y的值随x值的增大而减小,
所以m=-1,
故答案为-1.【题目点拨】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.12、【解题分析】
根据一次函数的定义进行判断即可.【题目详解】解:,是一次函数;,自变量的次数为2,故不是一次函数;是一次函数.故答案为.【题目点拨】本题主要考查一次函数的定义,一次函数解析式y=kx+b的结构特征:(1)k是常数,k≠0;(2)自变量x的次数是1;(3)常数项b可以为任意实数.13、4【解题分析】
直接利用二次根式有意义的条件得出、的值,进而得出答案.【题目详解】、为实数,且满足,,,则.
故答案为:.【题目点拨】此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.14、【解题分析】
设直线与x轴交于点C,由直线BC的解析式可得出结合可得出,通过解含30度角的直角三角形即可得出b值.【题目详解】设直线与x轴交于点C,如图所示:∵直线BC的解析式为y=x+b,∴∵∴当x=0时,y=x+b=b.在Rt△ABO中,OB=b,OA=5,∴AB=2b,∴∴故答案为:【题目点拨】考查待定系数法求一次函数解析式,三角形的外角性质,含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.15、2【解题分析】
根据等腰梯形的性质、梯形面积公式求解即可.【题目详解】∵四边形ABCD是等腰梯形,∴∴等腰梯形ABCD的面积故答案为:2.【题目点拨】本题考查了梯形的面积问题,掌握等腰梯形的性质、梯形面积公式是解题的关键.16、2cm≤h≤3cm【解题分析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,则筷子露在外面部分的取值范围为:.故答案为:2cm≤h≤3cm【题目点拨】本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.17、1.【解题分析】试题分析:∵,∴4算术平方根为1.故答案为1.考点:算术平方根.18、60°【解题分析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值三、解答题(共66分)19、(1);(2)【解题分析】
(1)将因式分解,然后将a、b的值代入求值即可;(2)根据二次根式有意义的条件,即可求出x和y的值,然后代入求值即可.【题目详解】解:(1)将,代入,得原式====(2)由题意可知:解得∴x=5将x=5代入中,解得:y=2∴的平方根为:【题目点拨】此题考查的是因式分解、二次根式的混合运算、二次根式有意义的条件和求平方根,掌握因式分解的方法、二次根式的运算法则、二次根式有意义的条件和平方根的定义是解决此题的关键.20、(2)详见解析(2)CF=【解题分析】
(2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.(2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.【题目详解】解:(2)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,∴△AOD≌△COF(SAS).∴AD=CF.(2)与(2)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2.∴DG=OG=OE=×2=2.∴AG=AO+OG=3+2=4,在Rt△ADG中,,∴CF=AD=.21、9米【解题分析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【题目详解】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB
∴,∵DE=40cm=0.4m,EF=30cm=0.3m,AC=1.5m,CD=10m,∴,∴BC=7.5米,∴AB=AC+BC=1.5+7.5=9米.【题目点拨】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.22、﹣1≤x<2【解题分析】
首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.【题目详解】解不等式①,得:x<2,解不等式②,得:x≥﹣1,所以不等式组的解集为﹣1≤x<2,将不等式组的解集表示在数轴上如下:【题目点拨】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23、(1)P(﹣3,1);(2)Q(1,0)或(5,0);(3)0<m<1.【解题分析】
(1)根据两直线相交的性质进行作答.(2)根据三角形面积计算方式进行作答.(3)先做出直线经过O点、B点的讨论,再结合题意进行作答.【题目详解】(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,1).(2)设Q(m,0),由题意:•|m﹣3|•1=1,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=1,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<1.【题目点拨】本题考查了两直线相交的相关性质和三角形面积计算方式及与直线的综合运用,熟练掌握两直线相交的相关性质和三角形面积计算方式及与直线的综合运用是本题解题关键.24、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解题分析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【题目详解】(1)设每行驶1千米纯用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论