




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市2024届数学八年级第二学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:S2甲=1.4,S2乙=18.8,S2丙=2.5,则苗高比较整齐的是()A.甲种 B.乙种 C.丙种 D.无法确定2.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)4849505152车辆数(辆)46721则上述车速的中位数和众数分别是()A.49,50 B.49.5,7 C.50,50 D.49.5,503.一个多边形的每一个内角都是,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形4.如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.110° B.35° C.70° D.55°5.下列计算正确的是()A.=﹣3 B. C.5×5=5 D.6.若分式有意义,则的取值范围是()A. B. C. D.7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分80859095人数2864那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,908.小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A. B. C. D.9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90° B.AC=BDC.AD=BC,AB∥CD D.∠BAD=∠ADC10.如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为()A.9:4 B.3:2 C.25:9 D.16:9二、填空题(每小题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.12.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.13.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.14.如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.15.已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.16.如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.17.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.18.若不等式(m-2)x>1的解集是x<,则m的取值范围是______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.20.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?21.(6分)化简:;22.(8分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.23.(8分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.(l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5:2:3的比例确定个人成绩,那么谁将被录用?24.(8分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:月用水量(吨)户数求这户家庭月用水量的平均数、众数和中位数;根据上述数据,试估计该社区的月用水量;由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.25.(10分)某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分步赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表分数段频数频率60≤x<70180.3670≤x<8017c80≤x<90a0.2490≤x≤100b0.06合计1根据以上信息解答下列问题:(1)统计表中a=,b=,c=.(2)补全数分布直方图;(3)若80分以上的作品将被组织展评,试估计全校被展评作品数量是多少?26.(10分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据方差反映了数据的波动状况,即可确定答案.【题目详解】解:观察数据可知甲小麦苗的方差小,故甲小麦长势比较整齐.故选A.【题目点拨】本题解题的关键是灵活应用方差的意义,这需要平常学习时,关注基础知识.2、D【解题分析】
根据中位数的众数定义即可求出.【题目详解】车辆总数为:4+6+7+2+1=20辆,则中位数为:(第10个数+第11个数)众数为出现次数最多的数:50故选D【题目点拨】本题考查了中位数和众数,难度低,属于基础题,熟练掌握中位数的求法是解题关键.3、B【解题分析】
根据多边形的内角和公式列式计算即可得解.【题目详解】解:设这个多边形是n边形,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形是五边形.故选B.【题目点拨】本题考查了多边形的内角问题,熟记多边形的内角和公式是解题的关键.4、C【解题分析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.【题目详解】∵四边形ABCD是平行四边形,∴∠BCD=∠A=110°,∴∠1=180°﹣∠BCD=180°﹣110°=70°,故选C.【题目点拨】本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.5、D【解题分析】
根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【题目详解】A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=25,所以C选项错误;D、原式==2,所以D选项正确.故选D.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、B【解题分析】
分式有意义时,分母x-1≠0,由此求得x的取值范围.【题目详解】依题意得:x-1≠0,解得x≠1.故选B.【题目点拨】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.7、B【解题分析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【题目详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.【题目点拨】本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、D【解题分析】
首先将各选项代入计算看是否在直线上即可.【题目详解】A选项,当代入故在直线上.B选项,当代入故在直线上.C选项,当代入故在直线上.D选项,当代入故不在直线上.故选D.【题目点拨】本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.9、C【解题分析】A.有一个角是直角的平行四边形是矩形,故答案错误;B.对角线相等的平行四边形是矩形,故答案错误;C.一组对边相等,另一组对边平行的平行四边形不能判定是矩形,故答案正确;D.在平行四边形ABCD中,∠BAD+∠ADC=180°,根据∠BAD=∠ADC可以得到∠BAD=90°,故答案错误.故选C.10、C【解题分析】
由矩形的性质可知:AB=CD,AB∥CD,进而可证明△AOB∽△COE,结合已知条件可得AO:OC=3:5,再根据相似三角形的性质:面积之比等于相似比的平方即可求出△AOF与△BOC的面积之比.【题目详解】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴△AOB∽△COE,∵DE:EC=2:3,∴CE:CD=3:5,∴CE:CD=CE:AB=CO:AO=3:5,∴S△AOF:S△BOC=25:1.故选C.【题目点拨】本题考查了矩形的性质、相似三角形的判定和性质,熟记两个三角形相似面积之比等于相似比的平方是解题的关键.二、填空题(每小题3分,共24分)11、等边三角形的三个角都相等.【解题分析】
把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【题目详解】“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,故答案为:等边三角形的三个角都相等.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12、甲【解题分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【题目详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【题目点拨】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、20.【解题分析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD=∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.14、4【解题分析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【题目详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4∵∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4【题目点拨】本题主要考查了平行四边形的性质,线段垂直平分线的性质。15、720°【解题分析】
先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.【题目详解】∵某个正多边形的每个内角都是,∴这个正多边形的每个外角都是,∴这个多边形的边数为:=6.∴这个正多边形的内角和为:(6-2)×180°=720°.故答案为:720°.【题目点拨】本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.16、6a【解题分析】
根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【题目详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.【题目点拨】本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.17、1cm【解题分析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中,AE==4,∴BE=AB−AE=5−4=1(cm),故答案为1cm.【题目点拨】本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.18、m<1【解题分析】
根据不等式的性质和解集得出m-1<0,求出即可.【题目详解】∵不等式(m-1)x>1的解集是x<,
∴m-1<0,
即m<1.
故答案是:m<1.【题目点拨】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.三、解答题(共66分)19、(1)y=;(2)当0<x<2或x>6时,反比例函数的值大于一次函数的值.【解题分析】
(1)根据平行四边形的性质求得点B的坐标为(2,3),代入反比例函数的解析式即可求得k值,从而求得反比例函数的表达式;(2)先求得m的值,根据图象即可求解.【题目详解】(1)∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,而A(﹣2,0)、C(0,3),∴B(2,3);设所求反比例函数的表达式为y=(k≠0),把B(2,3)代入得k=2×3=6,∴反比例函数解析式为y=;(2)把D(m,1)代入y=得m=6,则D(6,1),∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.【题目点拨】本题主要考查了反比例函数点的坐标与反比例函数解析式的关系及平行四边形的性质,关键是熟练掌握凡是反比例函数图象经过的点都能满足解析式.解决第(2)问时,利用了数形结合的数学思想.20、(1)该一次函数解析式为y=x+1;(2)离加油站的路程是10千米.【解题分析】
(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。【题目详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得,
解得:,
∴该一次函数解析式为y=x+1.
(2)当y=x+1=8时,
解得x=2.
即行驶2千米时,油箱中的剩余油量为8升.
530-2=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【题目点拨】本题主要考查的是一次函数的应用,解题的关键是掌握待定系数法.21、.【解题分析】
先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【题目详解】解:原式.【题目点拨】本题考查了二次根式的混合运算,解题关键在于结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.22、(1)C(0,1).(2)y=x+1.(3)P1(4,3),P2()P3(),P4().【解题分析】试题分析:(1)通过解方程x2﹣14x+42=0可以求得OC=1,OA=2.则C(0,1);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.试题解析:(1)解方程x2-14x+42=0得x1=1,x2=2∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+42=0的两个实数根∴OC=1,OA=2∴C(0,1)(2)设直线MN的解析式是y=kx+b(k≠0)由(1)知,OA=2,则A(2,0)∵点A、C都在直线MN上∴解得,∴直线MN的解析式为y=-x+1(3)∵A(2,0),C(0,1)∴根据题意知B(2,1)∵点P在直线MNy=-x+1上∴设P(a,--a+1)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(-a+1-1)2=14解得,a=±,则P2(-,),P3(,)③当PB=BC时,(a-2)2+(-a+1-1)2=14解得,a=,则-a+1=-∴P4(,)综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)考点:一次函数综合题.23、(1)候选人乙将被录用;(2)候选人丙将被录用.【解题分析】
(1)先根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分,再根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;
(2)根据加权成绩分别计算三人的个人成绩,进行比较.【题目详解】解:(l)甲、乙、丙的民主评议得分分别为:甲:200×25%=50分,乙:200×40%=80分,丙:200×35%=70分.甲的平均成绩为(分),乙的平均成绩为:(分),丙的平均成绩(分).由于1.67>1>2.67,所以候选人乙将被录用.(2)如果将笔试、面试、民主评议三项测试得分按5:2:3的比例确定个人成绩,那么,甲的个人成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售职员岗位工作方案支配2025年
- 2025年女生节创意活动方案
- 2025年疫情防控措施应急方案
- 2025年销售部工作方案书演讲稿
- 《电子技术项目化教程》课件 项目四 报警显示器的制作
- 2025年第一学期个人工作方案
- 低压电器 课件 单元三 三相异步电动机控制
- 2025年电子声光控灯座项目可行性研究报告
- 沪科版物理高一上1-G《自由落体运动》教案
- 2025年甘蔗种子项目可行性研究报告
- 2024年浙江长征职业技术学院单招综合素质考试题库附答案
- 2025届安徽省池州市普通高中高三下学期教学质量统一监测物理试卷(含答案)
- 库房管理工作职责与规范化
- 专题06文学文化常识中考语文一轮复习
- WMS仓库管理系统采购协议
- 2024国家数字化范式与路径-公共政策立场-67正式版
- 2025年河南工业和信息化职业学院单招职业技能测试题库必考题
- 瑞吉欧幼儿教育
- 2025年中国人寿招聘笔试笔试参考题库附带答案详解
- 中国输电线路在线监测系统行业发展状况及前景规模调查报告2025-2030年
- 第16课《有为有不为》公开课一等奖创新教学设计
评论
0/150
提交评论