版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.5矩形的性质专项提升训练(重难点培优)班级:___________________姓名:_________________得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•阜平县期末)如图,AC,BD是矩形ABCD的对角线,∠AOB=40°,则∠ACD的度数为()A.50° B.55° C.65° D.70°【分析】根据矩形的性质可知,AC=BD,AO=CO,BO=DO,所以OC=OD,根据对顶角相等得到∠AOB=∠COD=40°,再利用等腰三角形的性质求得∠ACD的度数即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∴OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠COD=40°,∴∠OCD=∠ODC=70°.故选:D.2.(2022春•喀什地区期末)如图,在矩形ABCD中,∠BOC=120°,AC=2,则AB的长为()A.1 B.2 C. D.【分析】由矩形的性质得出OA=OB=1,再证明△AOB是等边三角形,得出AB=OA即可.
【解答】解:∵四边形ABCD是矩形,AC=2,∴OA=AC=1,OB=BD,AC=BD,∴OA=OB=1,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1;故选:A.3.(2022春•覃塘区期末)在矩形ABCD中,若相邻的两边长分别是4和,则对角线所夹的锐角度数是()A.30° B.40° C.45° D.60°【分析】根据矩形的性质得出∠ABC=90°,根据AB和BC的长求出AC,得出等边三角形AOB,即可求出对角线所夹的锐角度数.【解答】解:如图,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,AC=2AO,BD=2BO,∵AB=4,BC=4,∴在Rt△ABC中,由勾股定理得:AC===8,∴AO=BO=×8=4,∵AB=4,∴△AOB是等边三角形,∴∠AOB=60°,即对角线所夹的锐角度数是60°.故选:D.4.(2022春•平泉市期末)求证:矩形的两条对角线相等.
已知:如图,四边形ABCD为矩形.求证:AC=BD.以下是排乱的证明过程:①∵BC=CB②∴AB=CD,∠ABC=∠DCB③∵四边形ABCD是矩形④∴AC=DB⑤∴△ABC≌△DCB证明步骤正确的顺序是()A.①②③⑤④ B.③①②⑤④ C.①⑤②③④ D.③②①⑤④【分析】写出证明过程,由证明过程可以判断顺序.【解答】解:∵四边形ABCD是矩形∴AB=CD,∠ABC=∠DCB,又∵BC=BC,∴△ABC≌△DCB,∴AC=BD,故顺序为③②①⑤④.故选:D.5.(2022春•海口期末)如图,在矩形ABCD中,DE∥AC,CE∥BD.AC=4,则四边形OCED的周长为()A.6 B.8 C.10 D.12【分析】首先利用平行四边形的判定证明四边形ODEC为平行四边形,然后利用矩形的性质得到OD=
OC=2即可求出四边形OCED的周长.【解答】解:∵DE∥AC,CE∥BD,∴四边形ODEC为平行四边形,∴DE=OC,CE=OD,∵四边形ABCD为矩形,∴AC=BD,OD=OC=OA=OB,∴OD=OC=2,∴DE=CE=2,∴四边形OCED的周长为8.故选:B.6.(2022春•长乐区期中)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AD于E,若AB=4,BC=8,则AE的长为()A.3 B.4 C.5 D.2【分析】连接CE,根据矩形的对边相等可得AD=BC=8,CD=AB=4,根据矩形的对角线互相平分可得OA=OC,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AE=CE,设AE=CE=x,表示出DE,然后在Rt△CDE中,利用勾股定理列出方程求解即可.【解答】解:如图,连接CE,在矩形ABCD中,∵AB=4,BC=8,∴AD=BC=8,CD=AB=4,OA=OC,∵OE⊥AC,∴OE垂直平分AC,∴AE=CE,设AE=CE=x,则DE=8﹣x,
在Rt△CDE中,CD2+DE2=CE2,即42+(8﹣x)2=x2,解得x=5,即AE的长为5.故选:C.7.(2022春•静海区校级期中)如图,在矩形ABCD中,O为AC的中点,EF过O点且EF⊥AC分别交DC于E交AB于E,点G是AE的中点,且∠AOG=30°,OE=1,则下列结论:(1)DC=3OG;(2)OG=BC;(3)四边形AECF为菱形;(4)S△AOE=S四边形ABCD.其中正确的个数为()A.①②③ B.①③④ C.②③④ D.①②④【分析】根据条件,OG是直角△AOE斜边上的中线,且△FOC≌△EOA,然后利用三角函数求得BC、AB以及OA、OC之间的关系即可作出判断.【解答】解:∵EF⊥AC,G是AF的中点,∴AG=OG=GF,∴∠OAF=∠AOG=30°,在直角△ABC中,∠CAB=30°,∴BC=AC=OC,设BC=a,AC=2a,AO=OC=a.AE=a,AB=a,OG=a,∴CD=AB=3OG,故①正确;OG=a≠a=BC,故②错误;∵∠FCO=∠EAO,∠CFO=∠AEO,OA=OC,∴△FOC≌△EOA(AAS),∴OE=OF,又∵AO=OC,EF⊥AC,
∴四边形AFCE是菱形,故③正确;∵S△AOE=a•a=a2,S矩形ABCD=a•a=a2,∴S△AOE=S矩形ABCD,故④正确.故选:B.8.(2022•荣昌区自主招生)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠DAC=60°,点F在线段AO上,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①DO=DA;②DF=EC;③∠ADF=∠ECF;④∠BDE=∠EFC中正确结论的序号为()A.①④ B.①②③ C.②③④ D.①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,即可得出结论①正确;②如图,连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④根据△DAO,△DEF是等边三角形可以证明∠EFC=∠ADF,然后根据②∠ADF=∠BDE,等量代换即可得到∠BDE=∠EFC.【解答】解:①在矩形ABCD中,对角线AC,BD相交于点O,∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,故①正确,②连接OE.∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,
∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC=DF,故②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④∵△DAO,△DEF是等边三角形,∴∠DAO=∠DFE=60°,∴∠EFC+∠AFD=∠ADF+∠AFD=120°,∴∠EFC=∠ADF,根据②知∠ADF=∠BDE,∴∠BDE=∠EFC.故④正确.故选:D.
9.(2022秋•章丘区期中)如图,在矩形ABCD中,AB=24,BC=12,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形.则AE的长是()A.15 B.20 C. D.【分析】连接EF交AC于点O,连接CE,根据菱形的性质可得CF=CE,证明△CFO≌△AEO,可得CF=AE,再根据勾股定理可得CE的长,进而可得结论.【解答】解:如图,连接EF交AC于点O,连接CE,∵四边形EGFH是菱形,∴EF⊥GH,OE=OF,∴CF=CE,在△CFO和△AEO中,,∴△CFO≌△AEO(AAS),∴CF=AE,∴CE=AE,∴BE=AB﹣AE=24﹣CE,在Rt△CEB中,根据勾股定理,得CE2=BE2+BC2,∴CE2=(24﹣CE)2+122,解得CE=15.∴AE=15.故选:A.
10.(2022秋•姜堰区期中)如图,在矩形ABCD中,AB=3cm,BC=cm,点P从A点出发沿AB以cm/s的速度向点B运动,当PA=PC时,点P运动的时间为()A.s B.2s C.10s D.10s或2s【分析】设点P运动的时间为ts,根据题意得:AP=tcm,PC==tcm,PB=AB﹣AP=(3﹣t)cm,然后根据勾股定理列方程求解即可.【解答】解:设点P运动的时间为ts,根据题意得:AP=tcm,∴PC==tcm,∵PB=AB﹣AP=(3﹣t)cm,∴PC2=BC2+PB2,∴t2=2+(3﹣t)2,解得t=2或t=10(舍去),∴点P运动的时间为2s,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•费县期末)如图所示.在矩形ABCD中,AB=2.BD=4,则∠AOD=120度.【分析】根据矩形的性质可知OA=OB,OB=BD,证得OB=OA=AB=2,所以△AOB是等边三角形,得出∠AOB=60°,则∠AOD=120°.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=AC,OB=BD,∴OA=OB,
∵BD=4,AB=2,∴OB=OA=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=120°.故答案为:120.12.(2022春•仙居县期末)如图,矩形ABCD中,AC与BD交于点O,若∠COB=120°,AB=6,则对角线BD=12.【分析】根据矩形性质求出BD=2OB,OA=OB,求出∠AOB=60°,得出等边△AOB,求出OB=AB,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴BD=2OB,AC=2OA,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=6,∴BD=2OB=12,故答案为:12.13.(2022春•二道区期末)如图,矩形ABCD中,对角线AC与BD相交于点O,AE垂直平分线度OB,垂足为点E,若BD=15,则AB=7.5.【分析】首先利用矩形的性质得到OA的长度,然后利用线段的垂直平分线的性质得到AB=OB=OA
即可求解.【解答】解:∵矩形ABCD中,对角线AC与BD相交于点O,∴AO=OB=OC=OD,而BD=15,∴OB=OA=BD=7.5,∵AE垂直平分线段OB,∴AB=OA,∴AB=OB=OA,∴AB=7.5.故答案为:7.5.14.(2022春•洛江区期末)如图,在矩形ABCD中,AE平分∠BAD交BC于点E,AD=8cm,CE=3cm,则AB=5cm.【分析】首先利用矩形的性质得到可以证明∠DAE=∠BEA,然后利用角平分线的性质证明∠BAE=∠BEA,接着利用等腰三角形的判定得到AB=BE即可求解.【解答】解:∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,∵AD=8cm,CE=3cm,∴BC=8,∴AB=BE=BC﹣CE=8﹣3=5cm.故答案为:5.
15.(2022春•盐都区期中)如图,在矩形ABCD中,AB=3,对角线AC的长为5,作AC的垂直平分线交BC于点M,连接AM,则△ABM的周长为7.【分析】由勾股定理可求BC的长,由线段垂直平分线的性质可得AM=CM,可求解.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∴BC===4,∵AC的垂直平分线交BC于点M,∴AM=CM,∴△ABM的周长=AB+BM+AM=AB+BC=7,故答案为:7.16.(2022•南京模拟)如图,矩形ABCD的对角线AC,BD相交于点O,OF⊥AB,垂足为点F,BE⊥AC,垂足为点E,且E是OC的中点.若OF=2,则BD的长为8.【分析】根据矩形的性质可以得到OC=OB,再根据BE⊥AC及E点为CO的中点,根据线段垂直平分线的性质证得△CBO是等边三角形,从而得到∠DBA=30°,然后根据30°直角三角形的性质求得BO长,BD=2BO,即可得出答案.【解答】解:∵BE⊥AC,E点为CO的中点,∴BE垂直平分OC,∴BC=OB,∵四边形ABCD是矩形,∴AC=BD,OC=OA,OD=OB,∠CBA=90°,∴OC=OB,
∴CB=BO=CO,∴△OBC是等边三角形,∴∠CBD=60°,∴∠DBA=30°,∵OF⊥AB,OF=2,∴BO=2OF=4,∵O点为BD中点,∴BD=2BO=8.故答案为:8.17.(2022春•上犹县期末)如图,矩形ABCD中,已知:AB=3,AD=5,点P是BC上一点,且△PAD是等腰三角形,则BP=1或4或2.5.【分析】根据矩形的性质可知DC=AB=3,AD=BC=5,再根据△PAD是等腰三角形的性质可得DP=AD=5,勾股定理可得CP的长度,则BP=BC﹣CP,即可求得BP的长度.【解答】解:①当DP=AD时,∵矩形ABCD,∴DC=AB=3,AD=BC=5,∵△PAD是等腰三角形,∴DP=AD=5,在Rt△PCD中,PC==4,∴BP=BC﹣CP=5﹣4=1.②当AD=AP时,∴AP=AD=5,在Rt△ABP中,由勾股定理得,
BP==4,③当AP=DP时,过P作PE⊥AD于点E,∴AE=AD=2.5,∵∠B=∠BAE=∠AEP=90°,∴四边形ABPE是矩形,∴BP=AE=2.5.综上所述,BP=1或4或2.5.故答案为:1或4或2.5.18.(2022春•邗江区校级月考)点P在矩形ABCD内部,当点P到矩形的一条边的两个端点距离相等时,称点P为该边的“和谐点”.如图,点P在矩形ABCD内部,且AB=10,BC=6.若P是边AD的“和谐点”,连接PA,PB,PD,则tan∠PAB•tan∠PBA的最小值为.【分析】过点P作PN⊥AB于N,tan∠PAB•tan∠PBA=•=,设AN=x,则BN=10﹣x,求出AN•BN有最大值25,即可求得tan∠PAB•tan∠PBA的最小值是.【解答】解:过点P作PN⊥AB于N,如图:
∵点P是边AD的“和谐点”,∴PA=PD,∴PN=BC=3,∴tan∠PAB=,tan∠PBA=,∴tan∠PAB•tan∠PBA=•=,设AN=x,则BN=10﹣x,∴AN•BN=x(10﹣x)=﹣(x﹣5)2+25,当x=5时,AN•BN有最大值25,∴有最小值,∴tan∠PAB•tan∠PBA的最小值是.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•前郭县期末)如图,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠AOB=56°,求∠EAB的度数.【分析】根据矩形的性质可知OA=OB,根据∠AOB的度数求出∠ABO的度数,然后根据直角三角形的锐角互余求解即可.【解答】解:∵四边形ABCD是矩形,∴,∴AO=OB,又∵∠AOB=56°,
∴∠OBA=∠OAB=62°,∵AE⊥BD,∴∠BAE=90°﹣∠ABE=28°.20.(2022春•玉州区期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.(1)求证:AE=CF.(2)若AB=2,∠AOD=120°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=3,AC=2OA=6,在Rt△ABC中,由勾股定理求出BC,即可得出矩形ABCD的面积.【解答】解:(1)证明:∵四边形ABCD是矩形∴OA=OC,在△AOE和△COF∵,∴△AOE≌△COF(SAS),∴AE=CF.(2)∵四边形ABCD是矩形∴AC=BD∵,∴AO=DO∴∴在Rt△ADB中,BD=2AB=4,∴
∴矩形ABCD的面积=.21.(2022春•铜官区期末)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.【分析】(1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;【解答】解:∵矩形ABCD,∴AF∥EC,AO=CO∴∠FAO=∠ECO∴在△AOF和△COE中,,∴△AOF≌△COE(ASA)∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF为菱形,设BE=a,则AE=EC=3﹣a∴a2+22=(3﹣a)2∴a=则AE=EC=,∵AB=2,BC=3,
∴AC==∴AO=OC=,∴OE===,∴EF=2OF=.22.(2021春•柳南区校级期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在AC上,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AD=2,∠AOB=120°,求AB的长.【分析】(1)根据平行四边形的判定即可求出答案.(2)根据矩形的性质以及含30度角的直角三角形的性质即可求出答案.【解答】解:(1)在矩形ABCD中,∴OA=OB=OC=OD,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形.(2)由(1)可知:OA=OB,∵∠AOB=120°,∴∠DBA=30°,∵AD=2,∴AB=AD=6.23.(2022秋•莲湖区校级月考)已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,BP.(1)如图1,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图2,若点E是边AB的中点,DE平分∠ADF,求BF的长.
【分析】(1)在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+BF2=12+42=17,得出DF2+EF2=DE2,即可得出结论;(2)作EH⊥DF于H,则∠A=∠DHE=90°,证明△AED≌△HED(AAS),得出DA=DH=6,EA=EH=4,得出EH=EB=4,证明Rt△EHF≌Rt△EBF(HL),得出BF=HF.设BF=x,则HF=x,CF=6﹣x,得出DF=DH+HF=6+x,在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】(1)证明;∵C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亲子读书心得体会15篇
- 中学生物教研组工作总结
- 中队委竞选演讲稿模板集锦9篇
- 中国医师节致辞范文(6篇)
- 中医院经济管理经验汇报材料-学习材料范文
- 应急值守课件教学课件
- 影像科紧急抢救预案及流程(修)
- 影响-“小组合作学习”实效性的因素及对策
- 机动车安全技术检测仪器设备计算机控制与通信技术条件 编制说明
- wipo-文本和图像作品的集体管理
- DB34∕T 4010-2021 水利工程外观质量评定规程
- 五笔编码字典
- 抽油机的日常、维护ppt课件
- 拼音本模板下载直接打印
- 土方量测量报告材料实用模板
- 如何帮助学生学会准确评价自己(面试稿)
- 钳工实训手册
- (完整版)7s推进工作具体计划安排
- 垃圾分类日常检查细则(附垃圾分类检查记录表)
- 水果罐头haccp修改版
- SNCR氨水脱硝计算
评论
0/150
提交评论