版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州大附属中学2024届数学八下期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列方程中是一元二次方程的是()A.x2﹣1=0 B.y=2x2+1 C.x+=0 D.x2+y2=12.我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形()的边上取一点,使得,连接,则等于()A. B. C. D.3.下列等式中,不成立的是A. B.C. D.4.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l5.在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.6.如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.2 B.4 C.6 D.37.若与互为相反数,则A. B. C. D.8.如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13 B.5 C.11 D.39.下列根式中属最简二次根式的是()A. B. C. D.10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为A. B.C. D.11.如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于()A.112.5° B.120° C.135° D.145°12.点在反比例函数的图象上,则下列各点在此函数图象上的是().A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数是_____.14.若二次根式在实数范围内有意义,则x的取值范围是_____.15.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是_____.16.一次函数不经过第_________象限;17.如图,已知的顶点,,点在轴正半轴上,按以下步骤作图:①以点为圆心,适当长度为半径作弧,分别交边,于点,;②分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交边于点,则点的坐为__________.18.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.三、解答题(共78分)19.(8分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)1号2号3号4号5号平均数方差八(1)班13914815016015315046.8八(5)班150139145147169150103.2根据以上信息,解答下列问题:(1)求两班的优秀率及两班数据的中位数;(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.20.(8分)(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(______),∵EG平分∠BEF,FG平分∠DFE(已知),∴______,______(______),∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),∴∠GEF+∠GFE=×180°=90°(______),在△EGF中,∠GEF+∠GFE+∠G=180°(______),∴∠G=180°-90°=90°(等式性质),∴EG⊥FG(______).(2)请用文字语言写出(1)所证命题:______.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?22.(10分)在面积都相等的所有三角形中,当其中一个三角形的一边长为时,这条边上的高为.(1)①求关于的函数表达式;②当时,求的取值范围;(2)小李说其中有一个三角形的一边与这边上的高之和为小赵说有一个三角形的一边与这边上的高之和为.你认为小李和小赵的说法对吗?为什么?23.(10分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=45,则当四边形DEFG为菱形时,点G的坐标为_____.24.(10分)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=______°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.25.(12分)如图1,在中,,,点,分别在边AC,BC上,,连接BD,点F,P,G分别为AB,BD,DE的中点.(1)如图1中,线段PF与PG的数量关系是,位置关系是;(2)若把△CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△FGP的形状,并说明理由;(3)若把△CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.26.在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】解:A.x2﹣1=0是一元二次方程,故A正确;B.y=2x2+1是二次函数,故B错误;C.x+=0是分式方程,故C错误;D.x2+y2=1中含有两个未知数,故D错误.故选A.2、B【解题分析】
利用黄金矩形的定理求出=,再利用矩形的性质得,代入求值即可解题.【题目详解】解:∵矩形ABCD中,AD=BC,根据黄金矩形的定义可知=,∵,∴故选B【题目点拨】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.3、D【解题分析】
根据不等式的性质,对选项进行求解即可.【题目详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.【题目点拨】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.4、D【解题分析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【题目点拨】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.5、B【解题分析】
根据题意,直接运用三角函数的定义求解.【题目详解】解:∵∠C=90°,AB=13,AC=12,∴sinB=.故选:B.【题目点拨】本题主要考查的是锐角三角函数的定义,解答此类题目的关键是画出图形便可直观解答.6、A【解题分析】
根据三角形中位线定理得到PD、DQ,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【题目详解】∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD∥BC,∴∠PDA=∠CBA,同理,QD=AE=6,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ=,故选A.【题目点拨】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7、A【解题分析】
根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.【题目详解】根据根式的性质和绝对值的性质可得:因此解得所以可得故选A.【题目点拨】本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.8、A【解题分析】
由扇形的面积公式可知S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【题目详解】解:∵S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=1.故选A.【题目点拨】本题考查勾股定理的应用,难度适中,解题关键是对勾股定理的熟练掌握及灵活运用,记住S1+S2=S3.9、A【解题分析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式10、B【解题分析】试题分析:由设原计划每天加工x套运动服,得采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天。根据关键描述语:“共用了18天完成任务”得等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18。从而,列方程。故选B。11、A【解题分析】
根据正方形的性质及已知条件可求得∠E的度数,从而根据外角的性质可求得∠AFC的度数.【题目详解】∵四边形ABCD是正方形,CE=CA,
∴∠ACE=45°+90°=135°,∠E=22.5°,
∴∠AFC=90°+22.5°=112.5°.
故答案为A.【题目点拨】本题考查正方形的性质,解题的关键是掌握正方形的性质.12、A【解题分析】
用待定系数法确定反比例函数的解析式,再验证选项中的点是否满足解析式即可,若满足函数解析式,则在函数图像上.【题目详解】解:将点代入,∴,∴,∴点在函数图象上,故选:A.【题目点拨】本题考查了反比例函数解析式的求法及根据解析式确定点在函数图形上,会求反比例函数的解析式是解题的关键.二、填空题(每题4分,共24分)13、18°【解题分析】
根据矩形的性质及角度的关系即可求解.【题目详解】∵,∠ADC=90°,∴∠EDC=36°,∵∴∠DCE=54°,∵CO=DO,∴∠ODC=∠DCE=54°,∴=∠ODC-∠EDC=18°【题目点拨】此题主要考查矩形的性质,解题的关键是熟知继续对角线互相平分且相等.14、x>2019【解题分析】
根据二次根式的定义进行解答.【题目详解】在实数范围内有意义,即x-20190,所以x的取值范围是x2019.【题目点拨】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.15、.【解题分析】首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.解:根据题意,知在数据中,共33个数字,其中11个9;故数字9出现的频率是.16、三【解题分析】
根据一次函数的图像与性质即可得出答案.【题目详解】∵一次函数解析式为:y=-x+1其中k=-1<0,b=1>0∴函数图像经过一、二、四象限,不经过第三象限故答案为:三.【题目点拨】本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.17、【解题分析】
根据勾股定理可得Rt△AOH中,AO=,根据∠AGO=∠AOG,即可得到AG=AO=,进而得到HG=-1,故可求解.【题目详解】如图,∵的顶点,,∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可知,OF平方∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=-1,∴G故填:.【题目点拨】此题主要考查坐标与图形,解题的关键是熟知等腰三角形和勾股定理的性质运用.18、50°或90°【解题分析】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.三、解答题(共78分)19、(1)八(1)班的优秀率为,八(2)班的优秀率为八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖【解题分析】
(1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;(2)直接根据表中信息,分析即可.【题目详解】(1)八(1)班的优秀率为,八(2)班的优秀率为∵八(1)班的成绩由低到高排列为139,148,150,153,160八(2)班的成绩由低到高排列为139,145,147,150,169∴八(1),八(2)班的中位数分别为150,147(2)八(1)班获冠军奖.理由:从优秀率看,八(1)班的优秀人数多;从中位数来看,八(1)班较大,一般水平较高;从方差来看,八(1)班的成绩也比八(2)班的稳定∴八(1)班获冠军奖.【题目点拨】此题主要考查数据的处理,熟练掌握,即可解题.20、(1)见解析;(2)两条平行线被第三条直线所截,同旁内角的平分线互相垂直【解题分析】
(1)先根据AB∥CD求出∠BEF与∠DFE的关系,再由角平分线的性质求出∠FEG+∠EFG的度数,然后由三角形内角和定理即可求出∠EGF的度数,进而可得结论;(2)根据(1)的结论写出所证命题即可.【题目详解】(1)证明:∵AB∥CD(已知),∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),∵EG平分∠BEF,FG平分∠DFE(已知),∴∠GEF=∠BEF,∠GFE=∠DFE(角平分线的定义),∴∠GEF+∠GFE=(∠BEF+∠DFE)(等式的性质),∴∠GEF+∠GFE=×180°=90°(等量代换),在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和定理),∴∠G=180°-90°=90°(等式性质),∴EG⊥FG(垂直的定义);(2)用文字语言可表示为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.故答案为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.【题目点拨】本题考查的是平行线的性质、角平分线的性质和三角形内角和定理,属于基础题型,熟练掌握上述基本知识是解题关键.21、小明至少答对18道题才能获得奖品.【解题分析】试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可.试题解析:设小明答对x道题,根据题意得,6x-2(25-x)>90解这个不等式得,,∵x为非负整数∴x至少为18答:小明至少答对18道题才能获得奖品.考点:一元一次不等式的应用.22、(1)①;②;(2)小赵的说法正确,见解析【解题分析】
(1)①直接利用三角形面积求法进而得出y与x之间的关系;②直接利用x≥3得出y的取值范围;
(2)直接利用x+y的值结合根的判别式得出答案.【题目详解】解:为底,为高,,;②当x=3时,y=2,
∴当x≥3时,y的取值范围为:0<y≤2;小赵的说法正确.理由如下:小李:整理得,x2-4x+6=0,
∵△=42-4×6<0,
∴一个三角形的一边与这边上的高之和不可能是4;小赵:得;小赵的说法正确.【题目点拨】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.23、(35,215)【解题分析】
作辅助线,构建全等三角形,证明ΔODN≅ΔCDM(AAS),得DN=DM,由中点得OD=25,根据直角三角形30度角的性质和勾股定理得:ON=5,DN=15,所以MN=EG=215,证明DF=OA=45【题目详解】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM//OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴ΔODN≅ΔCDM(AAS),∴DN=DM,∵OA=OC=45∴OD=25RtΔDON中,∴∠ODN=30°,∴ON=5,DN=∴MN=2DN=215∵四边形DEFG是菱形,∴DF⊥EG,DH=12DF∴Rt∴MG=EN,∵MG//EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=215∵BC//OA,DF⊥EG,EG⊥BC,∴DF//OA//BC,∵OD//AF,∴四边形DOAF是平行四边形,∴DF=OA=45∴DH=EN=1∴OE=ON+EN=35∴G(35,2故答案为:(35,2【题目点拨】本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24、(1)45;(2)见解析,EG=4+2;(3)2【解题分析】
(1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;(2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;(3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.【题目详解】(1)∵DE=5,AB=3,AD=2,∴AE=AB=3,∴∠AEB=∠ABE=45°,∵四边形ABCD是矩形,∴AD∥CB,∴∠AEB=∠EBF=45°,∠EFB=∠GED,∵EF=EB,∴∠EFB=∠EBF=45°,∴∠GED=45°,故答案为:45;(2)如图1所示.∵四边形ABCD是矩形,∴∠1=∠2=∠3=∠ABF=∠C=90°.∵∠4=60°,EF=EB,∴∠F=∠5=60°.∴∠6=∠G=30°,∴AE=BE.∵AB=3,∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,∵AD=2,∴DE=2+,∴EG=2DE=4+2;(3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,∵四边形EDBF是平行四边形,∴EF=BD,ED=BF,∵EF=BE,∴EB=BD,且AB⊥DE,∴AE=AD=2,∴BF=DE=4,∵EB==,∴EF=,∵EF=BE,EH⊥FC,∴FH=BH=2=BC,∴CH=4,∵EH⊥BC,CD⊥BC,AB⊥BC,∴EH∥CG∥BM,∵H是BF的中点,B是HC的中点,∴E是FM的中点,M是EG的中点,∴EG═2EF=2故答案为:2【题目点拨】本题主要考查矩形的性质,平行四边形的性质,勾股定理,等腰三角形的性质,直角三角形的性质定理,添加辅助线,构造等腰三角形和直角三角形是解题的关键.25、1)PF=PGPF⊥PG;(2)△FGP是等腰直角三角形,理由见解析;(3)S△PGF最大=.【解题分析】
(1)根据等腰三角形的性质和三角形的中位线定理解答即可;(2)由旋转知,∠ACD=∠BCE,进一步证明△CAD≌△CBE,再利用全等三角形的判定和性质以及三角形中位线定理解答;(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,PG最大时,△FGP面积最大,进而解答即可.【题目详解】解(1)PF=PGPF⊥PG;如图1,∵在△ABC中,AB=BC,点,分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国录入机数据监测研究报告
- 2024至2030年中国建筑工程机械数据监测研究报告
- 2024至2030年中国噪声控制设备数据监测研究报告
- 2024年中国酥果松子仁市场调查研究报告
- 2024年中国回转头钻铣床市场调查研究报告
- 2024年南昌客运资格用什么练题
- 2024年广州客运员初级理论知识试卷
- 2024年嘉峪关客运驾驶员从业资格考试
- 2024年拉萨客运从业资格证要考几门课
- 经理述职报告开头
- 营业执照借用免责协议
- 自乂琐言-袁保庆
- 北京市水资源税讲解
- 钢筋组织供应、运输、售后服务方案
- 异质性企业贸易理论的发展课件
- PLC顺序启停控制编程(A11)
- 颅脑损伤的急救课件
- 红色温馨生日快乐祝福相册PPT模板课件
- 融媒体中心节目信息三审三校制度
- 服饰礼仪(48页)ppt课件
- (精华)国家开放大学电大专科《网络系统管理与维护》形考任务3答案
评论
0/150
提交评论