版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
张家界市重点中学2024届数学八下期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,△GHD的边GD在边AD上,则ABBCA.1+24 B.42﹣4 C.32.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.3.下列根式是最简二次根式的是()A.2 B.23 C.9 D.4.要使分式有意义,应满足的条件是()A. B. C. D.5.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.6.某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是()A.20时风力最小 B.8时风力最小C.在8时至12时,风力最大为7级 D.8时至14时,风力不断增大7.用配方法解一元二次方程时,方程变形正确的是()A. B. C. D.8.下列各曲线中哪个不能表示y是x的函数的是()A. B. C. D.9.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1 B.2 C.3 D.410.均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的()A. B. C. D.二、填空题(每小题3分,共24分)11.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是_____.12.如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3,PE⊥PB交CD于点E,则PE=____________.13.如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.14.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若ΔACD的面积为4,则图中阴影部分两个三角形的面积和为15.已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.16.当a=______时,最简二次根式与是同类二次根式.17.将直线平移,使之经过点,则平移后的直线是__________.18.如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.三、解答题(共66分)19.(10分)计算:(1)(2)20.(6分)知y+3与5x+4成正比例,当x=1时,y=—18,(1)求y关于x的函数关系。(2)若点(m,—8)在此图像上,求m的值。21.(6分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.22.(8分)(1)解方程:x2+3x-4=0(2)计算:23.(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.24.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:(1)填空:a=,b=,c=;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.25.(10分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.(1)求C的坐标;(用含m的式子表示)(2)①请证明:EFOB;②用含m的式子表示AFC的周长;(3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.26.(10分)如图,已知△ABC中,三个顶点的坐标是:A(-3,6)、B(-5,3)、C(-2,1).(1)画出△ABC向右平移五个单位得到的,并写出的坐标;(2)画出△ABC关于轴对称的,并写出的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出ABBC【题目详解】解:设七巧板的边长为x,则AB=12x+22BC=12x+x+12x=ABBC=12x+故选:A.【题目点拨】本题考查了矩形的性质及七巧板,关键是熟悉七巧板的特征,表示出AB、BC的长.2、C【解题分析】
四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【题目详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【题目点拨】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.3、A【解题分析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【题目点拨】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4、C【解题分析】
直接利用分式有意义的条件得出答案.【题目详解】要使分式有意义,
则x-1≠0,
解得:x≠1.
故选:C.【题目点拨】此题考查分式有意义的条件,正确把握分式的定义是解题关键.5、A【解题分析】
试题分析:A、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故A正确;B、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故B错误;C、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故C错误;D、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故D错误;正确的只有A.故选A.考点:1.二次函数的图象;2.一次函数的图象.6、A【解题分析】
根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.【题目详解】解:由图象可得,20时风力最小,故选项A正确,选项B错误,在8时至12时,风力最大为4级,故选项C错误,8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,故选:A.【题目点拨】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7、B【解题分析】
,移项得:,两边加一次项系数一半的平方得:,所以,故选B.8、D【解题分析】
在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【题目详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【题目点拨】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.9、B【解题分析】
根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=4,求4的算术平方根即可得到结论.【题目详解】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=102﹣4×24=4,∴正方形EFGH的边长=2,故选:B.【题目点拨】本题考查了正方形的面积,三角形的面积,正确的识别图形是解题的关键.10、D【解题分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【题目详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【题目点拨】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.二、填空题(每小题3分,共24分)11、【解题分析】
依题意得OP=2,OQ=3,在直角三角形OPQ中,由勾股定理得PQ==.【题目详解】解:在直角坐标系中设原点为O,三角形OPQ为直角三角形,则OP=2,OQ=3,∴PQ=.故答案填:.12、【解题分析】连接BE,设CE的长为x∵AC为正方形ABCD的对角线,正方形边长为4,CP=3∴∠BAP=∠PCE=45°,AP=4-3=∴BP2=AB2+AP2-2AB×AP×cos∠BAP=42+()2-2×4××=10PE2=CE2+CP2-2CE×CP×cos∠PCE=(3)2+x2-2x×3×=x2-6x+18BE2=BC2+CE2=16+x2在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2∴PE2=22-6×2+18=10∴PE=.13、【解题分析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论【题目详解】连接,∵,是等腰直角三角形,∴,∠ABC=90°∵四边形是正方形∴BD=BF,∠DBF=∠ABC=90°,∴∠ABD=∠CBF,在△DAP与△BAP中∴,∴,点运动的路径长度即为点从到的运动路径,为.故答案为:【题目点拨】本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.14、1【解题分析】
根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是1,求出AC×AE=8,即可求出阴影部分的面积.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵在△ADC和△CBA中AD=BCDC=AB∴△ADC≌△CBA,∵△ACD的面积为1,∴△ABC的面积是1,即12AC×AE=8,∴阴影部分的面积是8﹣1=1,故答案为1.【题目点拨】本题考查了矩形性质,平行四边形性质,全等三角形的性质和判定的应用,主要考查学生运用面积公式进行计算的能力,题型较好,难度适中.15、1【解题分析】
根据直角三角形斜边上的中线等于斜边的一半可求得答案.【题目详解】解:
∵直角三角形斜边长为6cm,
∴斜边上的中线长=,
故答案为:1.【题目点拨】本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.16、1.【解题分析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【题目详解】解:∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.【题目点拨】本题考查同类二次根式.17、y=2x-1.【解题分析】
根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.【题目详解】设平移后直线的解析式为y=2x+b.把(9,3)代入直线解析式得3=2×9+b,解得b=-1.所以平移后直线的解析式为y=2x-1.故答案为:y=2x-1.【题目点拨】本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.18、【解题分析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【题目详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.【题目点拨】本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.三、解答题(共66分)19、(1);(2).【解题分析】
(1)先进行二次根式的乘法运算,然后再化简二次根式,最后合并同类二次根式即可得解;(2)利用完全平方公式进行计算即可得解.【题目详解】(1)===;(2)=40-60+45=.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1)y=x;
(2)m=.【解题分析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.【题目详解】(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为:(5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.【题目点拨】本题考查一次函数,解题的关键是掌握待定系数法求解析式.21、(1)30°;(2)1.【解题分析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D.根据线段垂直平分线的性质,可得AD=BD,可得∠ABD的度数,即可求得∠DBC的度数.(2)由△CBD的周长为20,可得AC+BC=20,根据AB=2AE=12,即可得出答案.【题目详解】解:(1)解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°.(2)∵MN垂直平分AB,∴DA=DB,AB=2AE=12,∵BC+BD+DC=20,∴AD+DC+BC=20,∴AC+BC=20,∴△ABC的周长为:AB+AC+BC=12+20=1.【题目点拨】此题考查了线段垂直平分线的性质以及等腰三角形的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键..22、(1)(2)【解题分析】
(1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可.(2)首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.【题目详解】解:(1)原方程变形得(x-1)(x+4)=0解得x1=1,x2=-4经验:x1=1,x2=-4是原方程的解.(2)原式=×××=【题目点拨】本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.23、AG=1.【解题分析】
由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.【题目详解】∵矩形ABCD折叠后AD边落在BD上,∴∠BA′G=∠DA′G=∠A=90°,∵AB=8,AD=6,∴A′D=6,BD===10,∴A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得:x2+42=(8-x)2,解得:x=1,∴AG=1.【题目点拨】本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.24、(1)众数为15;(2)3,4,15;8;(3)月销售额定为18万,有一半左右的营业员能达到销售目标.【解题分析】
根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【题目详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【题目点拨】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.25、(1)C(0,3m);(2)①证明见解析;②8m+;(3)或【解题分析】
(1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;(2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长(3)先用三角函数求出OD,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品代理合同(含代理区域与销售目标)
- 2024年度版权许可使用合同履约保证金规定
- 2024年度城市道路照明设施安装合同
- 2024年度物流服务外包合同(含冷链)
- 04版城市基础设施建设项目合同
- 身份鉴别用安全编码卡项目评价分析报告
- 2024年度商业物业租赁与管理合同
- 2024年度展览展示合同
- 贴纸书市场需求与消费特点分析
- 2024年度担保合同
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务5)试题及答案
- 《人力资源管理》全套教学课件
- 3.14 丝绸之路的开通与经营西域 课件 2024-2025学年部编版
- 第三单元《分数除法》(单元测试)-2024-2025学年六年级上册数学人教版
- 进京接访劝返工作预案
- 2025届重庆市西南大学附中高三一诊考试物理试卷含解析
- 信息系统售后服务方案
- 中职旅游专业《中国旅游地理》说课稿
- 2024年山东能源集团限公司高校毕业生招聘450人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年全国中学生地理知识竞赛试题及答案
- 2024年秋季人教版七年级上册生物全册教学课件(2024年秋季新版教材)
评论
0/150
提交评论