![2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M01/0F/38/wKhkGWXSLd-AGoKNAAG9OaOw0pw172.jpg)
![2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M01/0F/38/wKhkGWXSLd-AGoKNAAG9OaOw0pw1722.jpg)
![2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M01/0F/38/wKhkGWXSLd-AGoKNAAG9OaOw0pw1723.jpg)
![2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M01/0F/38/wKhkGWXSLd-AGoKNAAG9OaOw0pw1724.jpg)
![2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M01/0F/38/wKhkGWXSLd-AGoKNAAG9OaOw0pw1725.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省安丘市青云双语学校数学八下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75° B.45° C.60° D.30°2.下列特征中,平行四边形不一定具有的是()A.邻角互补 B.对角互补 C.对角相等 D.内角和为360°3.如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于(
)A.110° B.115° C.120° D.125°4.若,则的值为()A.1 B.-1 C.-7 D.75.如图,用一根绳子检查一个书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线就可以判断,其数学依据是()A.三个角都是直角的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形6.函数y=x-2的自变量的取值范围是()A.x≥2 B.x<2 C.x>2 D.x≤27.△ABC的三边分别是a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定△ABC是直角三角形的是()A.BACB.a:b:c5:12:13C.b2a2c2D.A:B:C3:4:58.如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=()A.140° B.120° C.110° D.100°9.下列分解因式,正确的是()A. B.C. D.10.关于函数的图象,下列结论错误的是()A.图象经过一、二、四象限B.与轴的交点坐标为C.随的增大而减小D.图象与两坐标轴相交所形成的直角三角形的面积为11.一次函数的图象经过第二、三、四象限,则化简所得的结果是()A. B. C. D.12.如图,过点的一次函数的图象与正比例函数的图象相交于点则这个一次函数的解析式是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.14.若,是一元二次方程的两个实数根,则__________.15.如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD的周长是16cm,EC=2cm,则BC=______.16.解关于x的方程产生增根,则常数m的值等于________.17.小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.18.如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)三、解答题(共78分)19.(8分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值20.(8分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数
1
2
3
4
5
6
7
8
9
10
11
人数
1
1
6
18
10
6
2
2
1
1
2
(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?21.(8分)解分式方程:(1);(2).22.(10分)计算:(1);(2);(3)23.(10分)如图,在□ABCD中,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E作直线EF将□ABCD分成两个全等的图形;(2)在图2中,DE=DC,请你作出∠BAD的平分线AM.24.(10分)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AGBD交CB的延长线于点G.(1)求证:DEBF;(2)当∠G为何值时?四边形DEBF是菱形,请说明理由.25.(12分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.01.02.03.04.04.54.144.55.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.26.如图,已知直线和上一点,用尺规作的垂线,使它经过点.(保留作图痕迹,不写作法)
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.【题目详解】解:连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.故选C.【题目点拨】此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.2、B【解题分析】
根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.【题目详解】解:根据平行四边形性质可知:A、C、D均是平行四边形的性质,只有B不是.故选B.【题目点拨】本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3、A【解题分析】
由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.【题目详解】解:∵四边形ABCD是矩形,∴AC=BD,OA=OB,∴∠BAO=∠ABO=55°,∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故答案为:A【题目点拨】本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.4、D【解题分析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【题目详解】由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.【题目点拨】此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.5、C【解题分析】
根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【题目详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选:C.【题目点拨】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.6、A【解题分析】
根据被开方数大于等于0列不等式求解即可.【题目详解】由题意得:x﹣1≥0,解得:x≥1.故选A.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7、D【解题分析】
根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【题目详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【题目点拨】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.8、D【解题分析】
根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.【题目详解】解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=110°
∴∠B=70°,
∵AC=BC,
∴∠B=∠BAC=70°,
∴∠DAC=110°-70°=40°,
∵AD=DC,
∴∠DAC=∠DCA=40°,
∴∠D=180°-∠DAC-∠DCA=100°,
故选:D.【题目点拨】本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.9、B【解题分析】
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【题目详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【题目点拨】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10、B【解题分析】
由系数k和b的正负可判断A;令x=0,可求得与y轴的交点坐标,可判断B;根据系数k的正负可判断C;根据与x轴、与y轴交点坐标可求得三角形的面积,可判断D;可得出答案.【题目详解】解:∵一次函数中,k=-1<0,b=3>0,
∴图象经过一、二、四象限,
故A正确,不符合题意;
在中令x=0,可得y=3,
∴直线与y轴的交点坐标为(0,3),故B错误,符合题意;
∵一次函数中,k=-1<0,
∴y随x的增大而减小,
故C正确,不符合题意;
∵直线与x轴的交点坐标为(3,0),与y轴的交点坐标为(0,3),
∴图象与坐标轴所围成的三角形面积为:×3×3=,
故D正确,不符合题意.
故选:B.【题目点拨】本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标的求法是解题的关键.11、D【解题分析】
根据题意可得﹣m<0,n<0,再进行化简即可.【题目详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【题目点拨】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.12、A【解题分析】
根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【题目详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组
,解得
,则这个一次函数的解析式为y=-x+3,故选:A.【题目点拨】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.二、填空题(每题4分,共24分)13、10cm【解题分析】
将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.【题目详解】解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,∴小蚂蚁爬行的最短路程为此时AB的长∵圆柱体的高为8cm,∴BC=8cm在Rt△ABC中,AB=cm故答案为:10cm.【题目点拨】此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.14、【解题分析】
根据根与系数的关系可得出,将其代入中即可求出结论.【题目详解】解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,
∴,
∴.
故答案为:.【题目点拨】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.15、1【解题分析】
由平行四边形的性质和已知条件证出∠BAE=∠DEA,证出AD=DE;求出AD+DC=8,得出BC=1.【题目详解】∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,AD=BC,
∴∠BAE=∠DEA,
∵平行四边形ABCD的周长是16,
∴AD+DC=8,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AD=DE,
∵EC=2,
∴AD=1,
∴BC=1,
故答案为:1.【题目点拨】本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质.16、【解题分析】
先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.【题目详解】两边同乘以得,由增根的定义得,将代入得,故答案为:.【题目点拨】本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.17、1【解题分析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.【题目详解】解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),∴众数与中位数的和是:150+150=1(度).故答案为1.【题目点拨】本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.18、AC=BD【解题分析】
根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【题目详解】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD【题目点拨】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.三、解答题(共78分)19、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解题分析】
(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【题目详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.【题目点拨】本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.20、(1)中位数为4个,众数为4个,平均数为5个(2)中位数或众数,理由见解析(3)25200人【解题分析】
试题分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以总人数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.试题解析:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)(人).故估计该市九年级男生引体向上项目测试的合格人数是25200人.考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.21、(1);(2)原方程无解.【解题分析】
(1)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可;(2)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可。【题目详解】解:(1)方程两边都乘,得解这个方程,得经检验,是原方程的根.(2)解:方程两边都乘,得解这个方程,得经检验,是原方程的增根,原方程无解.【题目点拨】本题考查了解分式方程的应用,能把分式方程转化成整式方程是解此题的关键.22、(1)1;(2);(3)5.【解题分析】
(1)先根据乘方的意义、负整数指数幂的意义、零指数幂的意义、绝对值的意义、二次根式的性质逐项化简,再进一步计算即可;(2)化为最简二次根式,然后去括号合并同类二次根式即可;(3)先根据完全平方公式和二次根式的乘法法则计算,再合并化简即可.【题目详解】解:原式;原式;原式.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1)详见解析;(2)详见解析【解题分析】
(1)作▱ABCD的对角线AC、BD,交于点O,作直线EO交BC于点F,直线EF即为所求;(2)作射线AF即可得.【题目详解】(1)如图1,直线EF即为所求;(2)如图2,射线AM即为所求.【题目点拨】本题主要考查作图-基本作图,熟练掌握平行四边形的性质是解题的关键.24、(1)详见解析;(2)当∠G=90°时,四边形DEBF是菱形,理由详见解析【解题分析】
(1)根据已知条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务外包中的劳动合同管理新规
- 中小企业劳动合同样本集
- 二手车交易合同正式版
- 中国·合同示范区发展展望
- 中外建筑工程承包合同
- 个人信用贷款合同条款
- 个人股权投资合同模板
- 中外新材料技术许可合同样本
- 专利产品授权代理合同范例
- 临时性劳动合同条款合同
- 2025版茅台酒出口业务代理及销售合同模板4篇
- 2025年N1叉车司机考试试题(附答案)
- 《医院财务分析报告》课件
- 2024年考研政治试题及答案
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 天津市部分区2023-2024学年高二上学期期末考试 物理 含解析
- 2025年初级社会工作者综合能力全国考试题库(含答案)
- 2024年潍坊护理职业学院单招职业适应性测试题库附答案
- 社会稳定风险评估报告风险评估参考
- GB/T 14343-2008化学纤维长丝线密度试验方法
- 制冷操作证培训教材-制冷与空调设备运行操作作业培课件
评论
0/150
提交评论