2024届吉林省长白县联考数学八下期末达标检测试题含解析_第1页
2024届吉林省长白县联考数学八下期末达标检测试题含解析_第2页
2024届吉林省长白县联考数学八下期末达标检测试题含解析_第3页
2024届吉林省长白县联考数学八下期末达标检测试题含解析_第4页
2024届吉林省长白县联考数学八下期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长白县联考数学八下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.52.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为()A.4cm B.5cm C.5cm或8cm D.5cm或cm3.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()A. B.C. D.4.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或65.无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B.C. D.7.下列函数中,y随x的增大而减小的函数是()A. B. C. D.8.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36° B.45° C.54° D.72°9.顺次连结菱形各边中点所得到四边形一定是(​)A.平行四边形 B.正方形​ C.矩形​ D.菱形10.计算=()A. B. C. D.11.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)12.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE二、填空题(每题4分,共24分)13.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.14.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.15.某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.16.若实数、满足,则以、的值为边长的等腰三角形的周长为。17.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.18.已知,则=___________三、解答题(共78分)19.(8分)甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)图中的t1=分;(2)若乙提速后,乙登山的速度是甲登山的速度的3倍,①则甲登山的速度是米/分,图中的t2=分;②请求出乙登山过程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.20.(8分)将平行四边形纸片按如图方式折叠,使点与重合,点落到处,折痕为.(1)求证:;(2)连结,判断四边形是什么特殊四边形?证明你的结论.21.(8分)已知直线:与轴交于点A.(1)A点的坐标为.(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标.22.(10分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:2019年中考体育成绩(分数段)统计表分数段频数(人)频率25≤x<30120.0530≤x<3524b35≤x<40600.2540≤x<45a0.4545≤x<50360.15根据上面提供的信息,回答下列问题:(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?23.(10分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,24.(10分)关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若k是该方程的一个根,求的值.25.(12分)已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.如图1,求证:≌;请判断图1中四边形BCEF的形状,并说明理由;若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.26.已知x=,y=.(1)x+y=,xy=;(2)求x3y+xy3的值.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【题目详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【题目点拨】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.2、D【解题分析】

作出图形,根据菱形的对角线互相垂直平分求出、,然后分正方形在的两边两种情况补成以为斜边的,然后求出、,再利用勾股定理列式计算即可得解.【题目详解】解:,,,,如图1,正方形在的上方时,过点作交的延长线于,,,在中,,如图2,正方形在的下方时,过点作于,,,在中,,综上所述,长为或.故选:.【题目点拨】本题考查了菱形的性质,正方形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,难点在于分情况讨论并作辅助线构造出直角三角形,作出图形更形象直观.3、D【解题分析】

根据中心对称图形的概念求解.【题目详解】A.此图案是轴对称图形,不符合题意;B.此图案不是中心对称图形,不符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,符合题意;故选D.【题目点拨】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【解题分析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【题目点拨】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.5、C【解题分析】

根据题目中的函数解析式和一次函数的性质可以解答本题.【题目详解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,故选:C.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、D【解题分析】

分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.【题目详解】解:根据题意得:当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);当点P在DA上运动时,此时S=8(4<t<6);当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);结合选项所给的函数图象,可得D选项符合题意.故选:D.【题目点拨】本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.7、C【解题分析】

根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.【题目详解】解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,C选项中,k=<0,y随x的增大而减少.故选:C.【题目点拨】本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8、A【解题分析】

由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【题目详解】解:设∠A=x°,∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠C=∠BDC=72°,∴∠DBC=36°,故选:A.【题目点拨】此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.9、C【解题分析】

根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【题目详解】如图,四边形ABCD是菱形,且E.

F.

G、H分别是AB、BC、CD、AD的中点,

则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.

故四边形EFGH是平行四边形,

又∵AC⊥BD,

∴EH⊥EF,∠HEF=90°,

∴边形EFGH是矩形.

故选:C.【题目点拨】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.10、A【解题分析】

直接利用二次根式的性质化简得出答案.【题目详解】解:原式==.故选:A.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.11、A【解题分析】

根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【题目详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【题目点拨】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.12、C【解题分析】

根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【题目详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.【题目点拨】本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.二、填空题(每题4分,共24分)13、2【解题分析】

由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【题目详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.∵ABCD是矩形,∴CD=AB=2.故答案为:2.【题目点拨】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、【解题分析】

通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【题目详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为,故答案为.【题目点拨】本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.15、.【解题分析】

根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.【题目详解】设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.故答案为:1000(1+x)2=1.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16、20。【解题分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。所以,三角形的周长为20。17、1【解题分析】分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=10°,∵AD=6,∴CD=1,又∵DE⊥AB,∴DE=DC=1.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.18、-1【解题分析】

将原式利用提公因式法进行因式分解,再将代入即可.【题目详解】解:∵x+y=-2,xy=3,

∴原式=xy(x+y)=3×(-2)=-1.【题目点拨】此题考查了因式分解和整式的代入求值法,熟练掌握因式分解和整式的运算法则是解本题的关键.三、解答题(共78分)19、(1)2;(2)①10,20;②.【解题分析】

(1)根据高度=速度×时间即可算出t1的值;

(2)①根据“高度=速度×时间”列式计算即可;②运用待定系数法求出线段OA与线段AB的解析式即可.【题目详解】(1)t1=30÷15=2故答案为:2;(2)①甲登山上升的速度是:(300-100)÷20=10(米/分钟),故答案为:10,20;t2=(300-100)÷10=20,②当0≤x≤2时,直线过原点,且经过点(2,30),∴y=15x,当2<x≤11时,设y=kx+b,直线过点(2,30),(11,300)得,y与x的数解析式也可以合起来表示为:.【题目点拨】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式.20、(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解题分析】

(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠1,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【题目详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠1.∴∠1=∠1.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠2.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠2=∠3.∴∠4=∠3.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.21、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).【解题分析】

(1),令x=0,则y=2,即可求解;(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.【题目详解】解:(1),令x=0,则y=2,则点A(0,2),故答案为(0,2);(2)联立直线l1和l2的表达式并解得:x=3,故点B(3,4),①当AO是平行四边形的一条边时,则点C(3,2)或(3,6);②当AO是平行四边形的对角线时,设点C的坐标为(a,b),点B(3,4),BC的中点和AO的中点坐标,由中点坐标公式:a+3=0,b+4=2,解得:a=-3,b=-2,故点C(-3,-2);故点C坐标为:(3,2)或(3,6)或(-3,-2).【题目点拨】本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.22、(1)a=108,b=0.1;补全频数分布直方图见解析;(2)40≤x<45;(3)优秀的约有7200名.【解题分析】

(1)根据在25≤x<30分数段内的频数和频率可以求得本次调查学生数,从而可以求得a、b的值,进而可以将频数分布直方图补充完整;

(2)根据频数分布表中的数据可以得到这组数据的中位数所在的分数段,从而可以解答本题;

(3)根据频数分布表中的数据可以计算出该市12000名九年级考生中考体育成绩为优秀的约有多少名.【题目详解】(1)本次抽取的学生有:12÷0.05=240(人),

a=240×0.45=108,b=24÷240=0.1,

补全频数分布直方图(2)由频数分布表可知,

中位数在40≤x<45这个分数段内,

∴甲同学的体育成绩在40≤x<45分数段内,

故答案为:40≤x<45;

(3)12000×(0.45+0.15)=7200(名),

答:该市12000名九年级考生中考体育成绩为优秀的约有7200名.【题目点拨】考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23、公里【解题分析】

先过点C向AB作垂线,构造直角三角形,利用60°和45°特殊角,表示出相关线段,利用已知CB长度为10公里,建立方程,解出这些相关线段,从而求得A、C两地的距离.【题目详解】解:如图,过点作于点,则,,,在中,,,,,由勾股定理可得:,在中,,、两地间的距离为公里.【题目点拨】本题主要考查了勾股定理应用题,正确构造直角三角形,然后利用特殊角表示相关线段,从而求解是解题关键.24、(1)k≤5;(2)3.【解题分析】

(1)根据判别式的意义得到△=22-4(k-4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论