2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析_第1页
2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析_第2页
2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析_第3页
2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析_第4页
2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省合肥市42中学数学八年级第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()A. B.C. D.2.如图,在中,,若的周长为13,则的周长为()A. B. C. D.3.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是64.下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A. B. C.. D.5.16的值是()A.±4 B.4 C.﹣4 D.±26.顺次连接矩形四边中点得到的四边形一定是()A.正方形 B.矩形 C.菱形 D.不确定,与矩形的边长有关7.以下列长度为边长的三角形是直角三角形的是()A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,98.若bk>0,则直线y=kx-b一定通过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限9.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数 B.中位数 C.平均数 D.众数和中位数10.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8cm B.16cm C.cm D.32cm11.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若、、、对应的邻补角和等于,则的度数为()A. B. C. D.12.已知反比例函数,下列结论不正确的是().A.该函数图像经过点(-1,1) B.该函数图像在第二、四象限C.当x<0时,y随x增大而减小 D.当x>1时,二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.14.单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是____分.15.某n边形的每个外角都等于它相邻内角的,则n=_____.16.若,则m-n的值为_____.17.如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;18.若等式成立,则的取值范围是__________.三、解答题(共78分)19.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.20.(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)本次调查的学生人数为______人;(2)求本次所调查学生读书本数的众数,中位数;(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?21.(8分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.22.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.23.(10分)化简求值:,从-1,0,1,2中选一个你认为合适的m值代入求值.24.(10分)张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)项目众数中位数平均数方差最高分小明8585小白70,10085100(1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;(2)你认为张老师会选择哪位同学参加比赛?并说明你的理由25.(12分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.26.如图所示,中,,、分别为、的中点,延长到,使.求证:四边形是平行四边形.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据中心对称图形的概念求解.【题目详解】A.此图案是轴对称图形,不符合题意;B.此图案不是中心对称图形,不符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,符合题意;故选D.【题目点拨】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解题分析】

求出AB+BC的值,其2倍便是平行四边形的周长.【题目详解】解:的周长为13,,,则平行四边形周长为,故选:.【题目点拨】本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.3、D【解题分析】

根据中位数、众数、方差等的概念计算即可得解.【题目详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.4、D【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】A.是轴对称图形,不是中心对称图形。故选项错误;B.是轴对称图形,不是中心对称图形。故选项错误;C.不是轴对称图形,也不是中心对称图形。故选项错误;D.是轴对称图形,也是中心对称图形。故选项正确。故选D.【题目点拨】此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念5、B【解题分析】

由于16表示16的算术平方根,所以根据算术平方根的定义即可得到结果.【题目详解】∵4∴16故选:B.【题目点拨】本题主要考查算术平方根的定义,一个非0数的算术平方根是正数,算术平方根容易与平方根混淆,学习中一定要熟练区分之.6、C【解题分析】

根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.【题目详解】如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.【题目点拨】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.7、C【解题分析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【题目详解】解:A、因为52+62≠72,所以三条线段不能组成直角三角形;B、因为72+82≠92,所以三条线段不能组成直角三角形;C、因为62+82=102,所以三条线段能组成直角三角形;D、因为52+72≠92,所以三条线段不能组成直角三角形;故选:C.【题目点拨】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.8、D【解题分析】

根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.【题目详解】解:由bk>0,知,①b>0,k>0;②b<0,k<0;①b>0,k>0时,直线经过第一、三、四象限,②b<0,k<0时,直线经过第一、二、四象限.综上可得,函数一定经过一、四象限.故选:D.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9、A【解题分析】

根据众数、平均数和中位数的定义分别对每一项进行分析,即可得出答案.【题目详解】A、这组数据3、4、5、5、6、6、6、6、7的众数是6,若去掉其中一个数6时,众数还是6,故本选项正确;

B、原数据的中位数是6,若去掉其中一个数6时,中位数是=5.5,故本选项错误;

C、原数据的平均数是,若去掉其中一个数6时,平均数是,故本选项错误;

D、众数不变,中位数发生改变,故本选项错误;

故选A.【题目点拨】考查了确定一组数据的中位数、平均数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、D【解题分析】

根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AE=BE,∴BC=2EO=2×4cm=8cm,即AB=BC=CD=AD=8cm,即菱形ABCD的周长为32cm,故选D.【题目点拨】本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.11、C【解题分析】

由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和,可求得五边形OAGFE的内角和,则可求得∠BOD.【题目详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为225°,

∴∠1+∠2+∠3+∠4+225°=4×180°,

∴∠1+∠2+∠3+∠4=495°,

∵五边形OAGFE内角和=(5-2)×180°=540°,

∴∠1+∠2+∠3+∠4+∠BOD=540°,

∴∠BOD=540°-495°=45°,

故选:C.【题目点拨】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12、C【解题分析】

∵∴A是正确的;反比例函数k=-1,图象在第二、四象限上,∴B是正确的;当x<0时,图象在第二象限上,y随着x的增大而增大,∴C是错误的;当x>l时,∴D是正确的.故选C二、填空题(每题4分,共24分)13、2【解题分析】

证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.【题目点拨】此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.14、90【解题分析】试题分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.该组数据的平均数=(8×88+4×94)÷(8+4)=90,则这12名选手的平均成绩是90分.考点:本题考查的是加权平均数的求法点评:本题易出现的错误是求88,94这两个数的平均数,对平均数的理解不正确.15、1.【解题分析】

根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【题目详解】解:因为多边形的每个外角和它相邻内角的和为180°,又因为每个外角都等于它相邻内角的,所以外角度数为180°×=36°.∵多边形的外角和为360°,所以n=360÷36=1.故答案为:1.【题目点拨】本题考查多边形的内角与外角关系,以及多边形的外角和为360°.16、4【解题分析】

根据二次根式与平方的非负性即可求解.【题目详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4【题目点拨】此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.17、40.【解题分析】

根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【题目详解】解:如图,连接AF,∵DE为△ABC的中位线,∴DE//BC,BC=2DE=10cm.由折叠的性质可得:,∴,∴.故答案是40.【题目点拨】本题考查翻折变换(折叠问题),三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.18、【解题分析】

根据二次根式有意义的条件,列出不等式组,即可得解.【题目详解】根据题意,得解得.【题目点拨】此题主要考查二次根式有意义的条件,熟练掌握,即可解题.三、解答题(共78分)19、(1);(2)见解析,.【解题分析】

(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【题目详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【题目点拨】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率20、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约3600本【解题分析】

将条形图中的数据相加即可;根据众数和中位数的概念解答即可;先求出平均数,再解答即可.【题目详解】,故答案为20;由条形统计图知,调查学生读书本数最多的是4本,故众数是4本在调查的20人读书本数中,从小到大排列中第9个和第10个学生读的本数都是4本,故中位数是4本;故答案为4;4;每个人读书本数的平均数是:(本),总数是:(本)答:估计该校学生这学期读书总数约3600本.【题目点拨】本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.21、△ABC和△DEF相似,理由详见解析【解题分析】

首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.【题目详解】△ABC和△DEF相似,理由如下:由勾股定理,得:AC=,AB=2,BC=5,DF=2,DE=4,EF=2,,所以,△ABC∽△DEF.【题目点拨】本题考查相似三角形的判定,找准对应边成比例即可.22、(1)AP=BQ;(1)QM的长为;(2)AM的长为.【解题分析】

(1)要证AP=BQ,只需证△PBA≌△QCB即可;(1)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=1.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中运用勾股定理就可解决问题;(2)过点Q作QH⊥AB于H,如图,同(1)的方法求出QM的长,就可得到AM的长.【题目详解】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(1)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=2.∵BP=1PC,∴BP=1,PC=1,∴BQ=AP===,∴BH===1.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中,根据勾股定理可得x1=(x-1)1+21,解得x=.∴QM的长为;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ1=AP1=AB1+PB1,∴BH1=BQ1-QH1=AB1+PB1-AB1=PB1,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x-m.在Rt△MHQ中,根据勾股定理可得x1=(x-m)1+(m+n)1,解得x=m+n+,∴AM=MB-AB=m+n+-m-n=.∴AM的长为.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.23、,【解题分析】

根据分式的混合运算法则运算即可,注意m的值只能取1.【题目详解】解:原式===把m=1代入得,原式=.【题目点拨】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.24、(1)90,90,100;85,145;(2)选择小明同学,理由见解析.【解题分析】

(1)先根据折线统计图得出两人的成绩,再根据众数、中位数、平均数和方差的定义计算可得;(2)根据众数、中位数、平均数和方差的意义解答,合理即可得.【题目详解】.解:(1)小明同学的成绩为:70、70、80、80、90、90、90、90、90、100,所以小明成绩的众数为90、中位数为90、最高分为100;小白同学的成绩为:70、70、70、80、80、90、90、100、100、100,所以小白同学成绩的平均数为=85,则方差为×[3×(70﹣85)2+2×(80﹣85)2+2×(90﹣85)2+3×(100﹣85)2]=145,补全表格如下:项目众数中位数平均数方差最高分小明90908585100小白70,1008585145100(2)选择小明同学,∵小明、小白的平均成绩相同,而小明成绩的方差较小,发挥比较稳定,∴选择小明同学参加比赛.【题目点拨】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.25、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解题分析】

(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;

(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;

(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论