版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市崇川区2024届数学八下期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.分式方程的解是().A.x=-5 B.x=5 C.x=-3 D.x=32.如图,在四边形中,动点从点开始沿的路径匀速前进到为止,在这个过程中,的面积随时间的变化关系用图象表示正确的是()A. B. C. D.3.若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.234.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100 B.4600 C.3000 D.36005.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形6.某电子产品经过连续两次降价,售价由元降到了元.设平均每月降价的百分率为,根据题意列出的方程是()A. B.C. D.7.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是()A.极差是 B.众数是 C.中位数是 D.平均数是8.若关于的不等式组的整数解共有个,则的取值范围是()A. B. C. D.9.为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指()A.200B.我县2019年八年级学生期末数学成绩C.被抽取的200名八年级学生D.被抽取的200名我县八年级学生期末数学成绩10.已知一次函数不过第二象限,则b试问取值范围是()A.b<0 B.b>0 C.b≤0 D.b≥0二、填空题(每小题3分,共24分)11.实数a、b在数轴上的位置如图所示,化简=_____.12.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.13.方程组的解是14.如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.15.中美贸易战以来,强国需更多的中国制造,中芯国际扛起中国芯片大旗,目前我国能制造芯片的最小工艺水平已经达到7纳米,居世界前列,已知1纳米=0.000000001米,用料学记数法将7纳米表示为______米.16.如果最简二次根式和是同类二次根式,那么a=_______17.的小数部分为_________.18.如图,在正方形ABCD中,P为对角线BD上一点,过P作PE⊥BC于E,PF⊥CD于F,若PE=1,PF=3,则AP=________
.三、解答题(共66分)19.(10分)如图,若在△ABC的外部作正方形ABEF和正方形ACGH,求证:△ABC的高线AD平分线段FH20.(6分)如图,在中,,、分别是、的中点,连接,过作交的延长线于.(1)证明:四边形是平行四边形;(2)若四边形的周长是,的长为,求线段的长度.21.(6分)先化简,再求值,其中22.(8分)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).(1)求几秒后,PQ的长度等于5cm.(2)运动过程中,△PQB的面积能否等于8cm2?并说明理由.23.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成,,,四组,并绘制了统计图(部分).组:组:组:组:请根据上述信息解答下列问题:(1)组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.24.(8分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,,的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.26.(10分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型乙型(1)如何进货,进货款恰好为元?(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
观察可得最简公分母是(x+1)(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【题目详解】方程两边同乘以(x+1)(x-1),
得3(x+1)=2(x-1),
解得x=-5.
经检验:x=-5是原方程的解.
故选A..【题目点拨】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2、C【解题分析】
根据点的运动过程可知:的底边为,而且始终不变,点到直线的距离为的高,根据高的变化即可判断与的函数图象.【题目详解】解:设点到直线的距离为,的面积为:,当在线段运动时,此时不断增大,也不端增大当在线段上运动时,此时不变,也不变,当在线段上运动时,此时不断减小,不断减少,又因为匀速行驶且,所以在线段上运动的时间大于在线段上运动的时间故选.【题目点拨】本题考查函数图象,解题的关键是根据点到直线的距离来判断与的关系,本题属于基础题型.3、B【解题分析】
直接利用8<<9,进而得出a,b的值即可得出答案.【题目详解】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=1.故选:B.【题目点拨】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.4、B【解题分析】
连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【题目详解】连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,AD=∴△AGD≌△GDC(SAS)∴AG=CG,在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF-BA-AG-GE,=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m),故选B.【题目点拨】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.5、C【解题分析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正确;B.在平行四边形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正确;C..当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°无法求出,故C错误;D.同理可证△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等边三角形,故D正确;故选C.点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.6、B【解题分析】
可根据:原售价×(1-降价的百分率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.【题目详解】设平均每月降价的百分率为,则依题意得:,故选B.【题目点拨】本题考查列一元二次方程,解题的关键读懂题意,掌握原售价×(1-降价的百分率)2=降低后的售价.7、B【解题分析】试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:A、极差=14﹣7=7,结论正确,故本选项错误;B、众数为7,结论错误,故本选项正确;C、中位数为8.5,结论正确,故本选项错误;D、平均数是8,结论正确,故本选项错误.故选B.8、B【解题分析】
首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m的范围.【题目详解】解:,解①得x<m,
解②得x≥1.
则不等式组的解集是1≤x<m.
∵不等式组有4个整数解,
∴不等式组的整数解是1,4,5,2.
∴2<m≤3.故选:B.【题目点拨】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9、D【解题分析】
根据样本是总体中所抽取的一部分个体解答即可.【题目详解】本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.故选:D.【题目点拨】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10、C【解题分析】
根据题意可知:图象经过一三象限或一三四象限,可得b=1或b<1,再解不等式可得答案.【题目详解】解:一次函数的图象不经过第二象限,则可能是经过一三象限或一三四象限,若经过一三象限时,b=1;若经过一三四象限时,b<1.故b≤1,故选C.【题目点拨】此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.二、填空题(每小题3分,共24分)11、-b【解题分析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.【题目详解】由图可知,,,所以,,.故答案为-b【题目点拨】本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.12、1【解题分析】
根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.【题目详解】是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为1.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.13、【解题分析】
试题考查知识点:二元一次方程组的解法思路分析:此题用加减法更好具体解答过程:对于,两个方程相加,得:3x=6即x=2把x=2代入到2x-y=5中,得:y=-1∴原方程组的解是:试题点评:14、1【解题分析】
过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.【题目详解】解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.∵AD//BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=DE,∴CD=DE,∵DF⊥BC,∴EF=CF,∵BC-AD=2DF,∴CF=DF,∴△CDF是等腰直角三角形,∴∠C=1°.故答案为:1.【题目点拨】此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.15、【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】1纳米米.
故7纳米故答案为:【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、3【解题分析】分析:根据同类二次根式的被开方式相同列方程求解即可.详解:由题意得,3a+4=25-4a,解之得,a=3.故答案为:3.点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.17、﹣1.【解题分析】解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.18、10【解题分析】
延长FP、EP交AB、AD于M、N,由正方形的性质,得到∠PBE=∠PDF=45°,再由等腰三角形的性质及正方形的性质得到BE=PE=PM=1,PN=FD=FP=3,由勾股定理即可得出结论.【题目详解】解:如图,延长FP、EP交AB、AD于M、N.∵四边形ABCD为正方形,∴∠PBE=∠PDF=45°,∴BE=PE=PM=1,PN=FD=FP=3,则AP=PN2+AN2=P【题目点拨】本题考查了正方形的性质.求出PM,PN的长是解答本题的关键.三、解答题(共66分)19、见解析.【解题分析】
从H作HQ⊥AD于Q,从F作FP⊥AD于P,分别证明△ADC≌△QAH,△ABD≌△FAP得出FP=QH,证明△FMP≌△HMQ,得出FM=MH,从而得出结论.【题目详解】从H作HQ⊥AD于Q,从F作FP⊥AD于P,∵ACGH为正方形∴∠QAH+∠DAC=90°,AH=AC,∵AD为△ABC的高线∴∠ADC=90°,∠DAC+∠DCA=90°,∴∠QAH=∠DCA∵HQ⊥AD∵∠AQH=90°,∴∠AQH=∠ADC∵AH=AC,∠QAH=∠DCA,∠AQH=∠ADC∴△ADC≌△QAH∴QH=AD,同理可证,△ABD≌△FAP,∴FP=AD,∴QH=FP,又∵∠FPM=∠AQH=90°,∠FMP=∠QMH∴△FMP≌△HMQ,∴FM=MH,∴△ABC的高线AD所在直线平分线段FH【题目点拨】本题考查正方形的性质,三角形全等的判定和性质.要证明两条线段全等,如果这两条线段在同一个三角形中,常用等角对等边去证明;如果这两条线段不在同一三角形中,那么一般要证明它们所在的三角形全等,如果不存在这样的三角形,那么就要辅助线,构造全等三角形.20、(1)见解析;(2).【解题分析】
(1)由三角形中位线定理推知,,然后结合已知条件“”,利用两组对边相互平行得到四边形为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到,即可得出四边形的周长,故,然后根据勾股定理即可求得;【题目详解】解:(1)、分别是、的中点,是延长线上的一点,是的中位线,.,又,四边形是平行四边形;(2)解:四边形是平行四边形;,是斜边上的中线,,四边形的周长,四边形的周长为,的长,,在中,,,即,解得,,【题目点拨】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.21、【解题分析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【题目详解】解:原式当时,原式【题目点拨】本题考查了分式的化简求值,熟练掌握分式混合运算的顺序以及运算法则是解题的关键.22、(1)1秒后PQ的长度等于5cm;(1)△PQB的面积不能等于8cm1.【解题分析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.【题目详解】解:(1)根据题意,得BP=(5-x),BQ=1x.当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,∴(5-x)1+(1x)1=51,5x1-10x=0,5x(x-1)=0,x1=0(舍去),x1=1,答:1秒后PQ的长度等于5cm.(1)设经过x秒以后,△PBQ面积为8,×(5-x)×1x=8.整理得x1-5x+8=0,Δ=15-31=-7<0,∴△PQB的面积不能等于8cm1.【题目点拨】此题主要考查了一元二次方程的应用,解题的关键是找到等量关系,列出方程并解答.23、(1)141;(2);(3)估算其中达到国家规定体育活动时间的人数大约有8040人.【解题分析】
(1)C组的人数为总人数减去各组人数;(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【题目详解】(1)组人数为(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在组,所以本次调查数据的中位数落在组内,故答案为:.(3)估算其中达到国家规定体育活动时间的人数大约有(人).【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.24、(1)a=7,b=7.5,c=4.2;(2)见解析.【解题分析】
(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【题目详解】(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【题目点拨】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年投资合同3篇
- 2024年木地板进口关税合同
- 2024年度物流行业标准化建设合同3篇
- 国学堂 幼儿园课程设计
- 2024年度健康体检与医疗服务协议3篇
- 中国计量大学《标准化理论与实践》2023-2024学年第一学期期末试卷
- 封口机课程设计
- 幼儿入园画画课程设计
- 中国地质大学(武汉)《视觉语言(2)》2022-2023学年第一学期期末试卷
- 中国地质大学(武汉)《计算机程序设计基础》2021-2022学年第一学期期末试卷
- 河西走廊简介描述课件
- 老年人直立性低血压的护理
- 【比亚迪汽车公司员工招聘问题及优化(12000字论文)】
- 某中央空调机房拆除施工方案
- 康复科2024年度工作计划创新与改革
- 全面预算管理促进效益提升
- (附答案)焊工(初级)模拟试题
- 建筑工程施工质量样板引路工作指引
- 2024苹果VisionPro技术拆解
- 交通运输的大数据应用与分析
- 技术部门内部管理制度模版
评论
0/150
提交评论