版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点21多边形与平行四边形考点总结1.n边形以及四边形的性质:(1)n边形的内角和为(n-2)×180°(n≥3),外角和为360°,对角线条数为eq\f(n(n-3),2).(2)四边形的内角和为360°,外角和为360°,对角线条数为2.(3)正多边形的定义:各边相等、各内角也相等的多边形叫做正多边形.2.平行四边形的性质及判定:(1)性质:①平行四边形的两组对边分别平行且相等.②平行四边形的对角相等,邻角互补.③平行四边形的对角线互相平分.④平行四边形是中心对称图形.(2)判定:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.3.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.4.在两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离.夹在两条平行线间的平行线段相等.真题演练一、单选题1.(2021·浙江衢州·中考真题)如图,在中,,,,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()A.6 B.9 C.12 D.15【答案】B【分析】根据中点的定义可得AD、AF的长,根据三角形中位线的性质可得DE、EF的长,即可求出四边形ADEF的周长.【详解】∵,,,点D,E,F分别是AB,BC,CA的中点,∴AD=2,AF=,DE、EF为△ABC的中位线,∴EF=2,DE==,∴四边形ADEF的周长=2+2+=9,故选:B.2.(2021·浙江·中考真题)如图,已知在中,,是边上的中线.按下列步骤作图:①分别以点为圆心,大于线段长度一半的长为半径作弧,相交于点;②过点作直线,分别交,于点;③连结.则下列结论错误的是()A. B. C. D.【答案】D【分析】首先根据题意可知道MN为线段BC的中垂线,然后结合中垂线与中线的性质逐项分析即可.【详解】由题意可知,MN为线段BC的中垂线,∵O为中垂线MN上一点,∴OB=OC,故A正确;∵OB=OC,∴∠OBC=∠OCB,∵MN⊥BC,∴∠ODB=∠ODC,∴∠BOD=∠COD,故B正确;∵D为BC边的中点,BE为AC边上的中线,∴DE为△ABC的中位线,∴DE∥AB,故C正确;由题意可知DB=DC,假设DB=DE成立,则DB=DE=DC,∠BEC=90°,而题干中只给出BE是中线,无法保证BE一定与AC垂直,∴DB不一定与DE相等,故D错误;故选:D.3.(2021·浙江宁波·中考真题)如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.【答案】A【分析】根据△AED和△BCG是等腰直角三角形,四边形ABCD是平行四边形,四边形HEFG是矩形可得出AE=DE=BG=CG=a,HE=GF,GH=EF,点O是矩形HEFG的中心,设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c,过点O作OP⊥EF于点P,OQ⊥GF于点Q,可得出OP,OQ分别是△FHE和△EGF的中位线,从而可表示OP,OQ的长,再分别计算出,,进行判断即可【详解】解:由题意得,△AED和△BCG是等腰直角三角形,∴∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠ABC,∠BAD=∠DCB∴∠HDC=∠FBA,∠DCH=∠BAF,∴△AED≌△CGB,△CDH≌ABF∴AE=DE=BG=CG∵四边形HEFG是矩形∴GH=EF,HE=GF设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c过点O作OP⊥EF于点P,OQ⊥GF于点Q,∴OP//HE,OQ//EF∵点O是矩形HEFG的对角线交点,即HF和EG的中点,∴OP,OQ分别是△FHE和△EGF的中位线,∴,∵∵∴,即而,所以,,故选项A符合题意,∴,故选项B不符合题意,而于都不一定成立,故都不符合题意,故选:A4.(2021·浙江宁波·中考真题)如图,在中,于点D,.若E,F分别为,的中点,则的长为()A. B. C.1 D.【答案】C【分析】根据条件可知△ABD为等腰直角三角形,则BD=AD,△ADC是30°、60°的直角三角形,可求出AC长,再根据中位线定理可知EF=。【详解】解:因为AD垂直BC,则△ABD和△ACD都是直角三角形,又因为所以AD=,因为sin∠C=,所以AC=2,因为EF为△ABC的中位线,所以EF==1,故选:C.5.(2021·浙江温州·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为()A. B. C. D.【答案】C【分析】如图,设BH交CF于P,CG交DF于Q,根据题意可知BE=PC=DF,AE=BP=CF,根据可得BE=PE=PC=PF=DF,根据正方形的性质可证明△FDG是等腰直角三角形,可得DG=FD,根据三角形中位线的性质可得PH=FQ,CH=QH=CQ,利用ASA可证明△CPH≌△GDQ,可得PH=QD,即可得出PH=BE,可得BH=,利用勾股定理可用BE表示长CH的长,即可表示出CG的长,进而可得答案.【详解】如图,设BH交CF于P,CG交DF于Q,∵由四个全等的直角三角形和一个小正方形组成的大正方形,∴BE=PC=DF,AE=BP=CF,∵,∴BE=PE=PC=PF=DF,∵∠CFD=∠BPC,∴DF//EH,∴PH为△CFQ的中位线,∴PH=QF,CH=HQ,∵四边形EPFN是正方形,∴∠EFN=45°,∵GD⊥DF,∴△FDG是等腰直角三角形,∴DG=FD=PC,∵∠GDQ=∠CPH=90°,∴DG//CF,∴∠DGQ=∠PCH,在△DGQ和△PCH中,,∴△DGQ≌△PCH,∴PH=DQ,CH=GQ,∴PH=DF=BE,CG=3CH,∴BH=BE+PE+PH=,在Rt△PCH中,CH==,∴CG=BE,∴.故选:C.6.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)如图,锐角△ABC中,点D是边AB的中点,点E在边AC上,有如下两个命题:①如果DE//BC,那么DE=BC;②如果DE=BC,那么DE//BC.下列判断正确的是()A.①是真命题,②是假命题 B.①是假命题,②是真命题C.①②都是真命题 D.①②都是假命题【答案】A【分析】根据三角形中位线定理判定①即可;如图当E恰好是AC的中点时,过点D作DF⊥AC于F,由△ABC是锐角三角形,则三角形中位线定理可知三角形ADE也必定是锐角三角形,∴DE>DF,那么在AF上还可以找到一点P,使得,即E在P点位置时满足,但是DE与BC不平行,故②是假命题.【详解】解:∵DE//BC,且点D是边AB的中点,∴DE是△ABC的中位线,∴故①是真命题;如图:当E恰好是AC的中点时,过点D作DF⊥AC于F,∵△ABC是锐角三角形,∴由三角形中位线定理可知三角形ADE也必定是锐角三角形,∴DE>DF,∴在AF上还可以找到一点P,使得,即E在P点位置时满足,但是DE与BC不平行,故②是假命题,故选A.7.(2021·浙江·杭州市十三中教育集团(总校)二模)如图,已知中,,,分别为,的中点,连结,过作的平行线与的角平分线交于点,连结,若,,则的正弦值为()A. B. C. D.【答案】A【分析】根据题意延长DF交AB于H,过F作FT⊥AB于T,连接CF,设DF=x,运用三角形中位线定理、全等三角形的性质以及锐角三角函数定义构建方程,求出x即可得出答案.【详解】解:延长DF交AB于H,过F作FT⊥AB于T,连接CF,
设DF=x,
∵DH∥AC,D为BC的中点,
∴H为AB的中点,
∴BH=AH,
∴DH是△ABC的中位线,
∴DH=AC=1,
∴FH=1-x,
∵FA平分∠CAB,FE⊥AC,FT⊥AB,
∴FE=FT,
∵E为AC的中点,FE⊥AC,
∴CF=AF,
在Rt△CFE和Rt△AFT中,
,
∴Rt△CFE≌Rt△AFT(HL),
∴AE=AT=1,
∵∠FAE=∠AFH=∠FAH,
∴FH=AH=BH=1-x,
∴TH=1-(1-x)=x,
∵∠C=∠BDH=∠TFH,
∴sin∠C=sin∠TFH,
∴,
解得:或(舍去),
∴,
∵DE=,
∴.故选:A.8.(2021·浙江定海·一模)如图,六边形是正六边形,点是边的中点,,分别与交于点,,则的值为().A. B. C. D.【答案】D【分析】设正六边形的边长为a,MN是△PCD的中位线,求出△PBM和△PCD的面积即可.【详解】解:设正六边形的边长为a,连接AC交BE于H点,如下图所示:正六边形六边均相等,且每个内角为120°,∴△ABC为30°,30°,120°等腰三角形,∴BE⊥AC,且,且,∵AF∥CD,P为AF上一点,∴,MN为△PCD的中位线,∴,由正六边形的对称性可知:,∴,∴,∴,故选:D.9.(2021·浙江义乌·一模)如图,已知的四个内角的平分线分别相交于点E,F,G,H,若,则S四边形EFGH÷S四边形ABCD四边形的值()A. B. C. D.【答案】A【分析】由角平分线的性质、两直线平行同旁内角互补性质解得,继而证明四边形EFGH是矩形,设,求得,,,,作于,最后根据平行四边形与矩形的面积解题.【详解】解:在中,平分平分,同理可证∴四边形EFGH是矩形,,设,则中,作于,中,S四边形EFGH÷S四边形ABCD,故选:A.10.(2021·浙江开化·一模)如图,在平行四边形中,平分交边于点,若平行四边形的周长是24,,则AB的长为()
A.4 B.5 C.5.5 D.6【答案】B【分析】由角平分线的性质得到,再由平行四边形对边平行的性质得到,继而由等角对等边得到,结合已知条件解题即可.【详解】解:平分,在平行四边形中,
平行四边形的周长是24,故选:B.二、填空题11.(2021·浙江·中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(是正五边形的五个顶点),则图中的度数是_______度.【答案】36【分析】根据题意,得五边形(是正五边形的五个顶点)为正五边形,且;根据多边形内角和性质,得正五边形内角和,从而得;再根据补角、等腰三角形、三角形内角和性质计算,即可得到答案.【详解】∵正五角星(是正五边形的五个顶点)∴五边形(是正五边形的五个顶点)为正五边形,且∴正五边形内角和为:∴∴∵∴∴故答案为:36.12.(2021·浙江丽水·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021·浙江嘉兴·中考真题)如图,在中,对角线,BD交于点O,,于点,若AB=2,,则的长为__________________.
【答案】【分析】根据勾股定理求得AC的长,结合平行四边形的性质求得AO的长,然后利用相似三角形的判定和性质求解.【详解】解:∵,,AB=2∴在Rt△ABC中,AC=∴在中,AO=在Rt△ABO中,BO=∵,∴又∵∴∴,解得:AH=故答案为:.14.(2021·浙江丽水·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中,则“奔跑者”两脚之间的跨度,即之间的距离是__________.【答案】【分析】先根据图1求EQ与CD之间的距离,再求出BQ,即可得到之间的距离=EQ与CD之间的距离+BQ.【详解】解:过点E作EQ⊥BM,则根据图1图形EQ与CD之间的距离=由勾股定理得:,解得:;,解得:∵∴∵EQ⊥BM,∴∴∴之间的距离=EQ与CD之间的距离+BQ故答案为.15.(2021·浙江金华·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是___________.【答案】【分析】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,用含有a的代数式表示点A的横坐标,表示点F的坐标,确定a值即可.【详解】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,如图,过点F作FG⊥x轴,垂足为G,点F作FH⊥y轴,垂足为H,过点A作AQ⊥x轴,垂足为Q,延长大等腰直角三角形的斜边交x轴于点N,交FH于点M,根据题意,得OC==,CD=a,DQ=,∵点A的横坐标为1,∴+a+=1,∴a=;根据题意,得FM=PM=,MH=,∴FH==;∴MT=2a-,BT=2a-,∴TN=-a,∴MN=MT+TN=2a-+-a==,∵点F在第二象限,∴点F的坐标为(-,)故答案为:(-,).三、解答题16.(2021·浙江衢州·中考真题)如图,在的网格中,的三个顶点都在格点上.(1)在图1中画出,使与全等,顶点D在格点上.(2)在图2中过点B画出平分面积的直线l.【答案】(1)画图见解析;(2)画图见解析【分析】(1)结合题意,根据全等三角形的性质作图,即可得到答案;(2)取格点D,则四边形ABCD为平行四边形,过点D和点B作直线l,即可得到答案.【详解】(1)如图,画∵∴∴就是所求作的三角形;(2)如图,取格点D,连接AD,CD,由(2)可知△ACD与△ACB全等,可以证明四边形ABCD是平行四边形,
过点D和点B作直线l交AC于点E,∴AE=AC,∴△ABE的面积等于△BEC的面积,则直线l即为所求.17.(2021·浙江温州·中考真题)如图,在中,,是对角线上的两点(点在点左侧),且.(1)求证:四边形是平行四边形.(2)当,,时,求的长.【答案】(1)见解析;(2).【分析】(1)由平行四边形的性质得到AB=CD,,和已知条件一起,用于证明三角形全等,再根据一组对边平行且相等的四边形是平行四边形判定定理得出结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学通关试题库(有答案)
- 2024年熟食制品项目资金筹措计划书代可行性研究报告
- 2024年造纸完成工段智能装备项目资金申请报告代可行性研究报告
- 2024常年采购协议条款与条件示例
- 2024年度建材销售协议格式
- 2024年专业门窗安装服务协议模板
- 2024公司B栋生产车间租赁协议
- 员工基本行为准则
- 银行外汇便利化政策落实情况总结
- 2024年规范二手公寓房产交易协议书
- 微型计算机原理与应用习题集及答案
- 河北省唐山市药品零售药店企业药房名单目录
- 喵喵老师制作 电子百拼的黑白电路图
- DB34-T 4010-2021 水利工程外观质量评定规程-高清现行
- 《整改报告》模板
- 送达地址确认书(样本)
- 江苏省历届中学生与社会作文大赛决赛试题及获奖范文(完整版)资料
- 六年级数学上册教案-分数乘法整理与练习 苏教版
- 《民航服务礼仪》项目五 地面服务礼仪
- 营业执照借用免责协议
- 小学道德与法治人教三年级上册第三单元安全护我成长-《遭遇陌生人》教案
评论
0/150
提交评论