2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题含解析_第1页
2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题含解析_第2页
2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题含解析_第3页
2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题含解析_第4页
2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省遵义市名校八年级数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列一元二次方程没有实数根的是()A.+2x+1=0 B.+x-2=0 C.+1=0 D.﹣2x﹣1=02.将不等式组的解集在数轴上表示出来,正确的是()A. B.C. D.3.一次函数y=kx+b的图象如图所示,则一元一次不等式kx+b<0的解集为()A.x<2 B.x>2 C.x<0 D.x>04.一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.35.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或126.如图所示,在中,的垂直平分线交于点,交于点,如果,则的周长是()A. B. C. D.7.如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.8.12名同学分成甲、乙两队参加播体操比赛,已知每个参赛队有6名队员,他们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5队员6甲队176175174172175178乙队170176173174180177设这两队队员平均数依次为x甲,x乙,身高的方差依次为S2甲,A.x甲>x乙,SC.x甲=x乙,S9.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且10.方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3 B.1,2,﹣3 C.1,﹣2,3 D.﹣1,﹣2,3二、填空题(每小题3分,共24分)11.__________.12.如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.13.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.14.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.15.计算:-=________.16.如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是________.17.当k=_____时,100x2﹣kxy+49y2是一个完全平方式.18.点C是线段AB的黄金分割点(AC>BC),若AC=2则AB⋅BC=______.三、解答题(共66分)19.(10分)解方程:(1)(2)2x2﹣2x﹣1=020.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,1),B(-1,3),C(-1,1)(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为((2)若△A1B1C(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;21.(6分)如图是某汽车行驶的路程s(km)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)求汽车在前9分钟内的平均速度.(2)汽车在中途停留的时间.(3)求该汽车行驶30千米的时间.22.(8分)计算:(1);(2).23.(8分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.24.(8分)如图,在中,,点P从点A开始,沿AB向点B以的速度移动,点Q从B点开始沿BC

以的速度移动,如果P、Q分别从A、B同时出发:几秒后四边形APQC的面积是31平方厘米;若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.25.(10分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.26.(10分)“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.成绩(米)

1.80~1.86

1.86~1.94

1.94~2.02

2.02~2.18

2.18~2.34

2.34~

得分(分)

5

6

7

8

9

10

某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:1.962.382.562.042.342.172.602.261.872.32请完成下列问题:(1)求这10名男生立定跳远成绩的极差和平均数;(2)求这10名男生立定跳远得分的中位数和众数;(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

分别计算每个方程中根的判别式△(b2-4ac)的值,找出△<0的方程即可解答.【题目详解】选项A,△=b2-4ac=22-4×1×1=0,方程有两个相等的实数根;选项B,△=b2-4ac=12-4×1×(-2)=9>0,方程有两个不相等的实数根;选项C,△=b2-4ac=0-4×1×1=-4<0,方程没有实数根;选项D,△=b2-4ac=(-2)2-4×3×(-1)=16>0,方程有两个不相等的实数根.故选C.【题目点拨】本题考查了一元二次方程根的情况与判别式△的关系,一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、C【解题分析】

根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.【题目详解】解:,

由不等式①,得x>3,

由不等式②,得x≤4,

∴原不等式组的解集是3<x≤4,在数轴上表示如下图所示,

故选:C.【题目点拨】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.3、B【解题分析】

直接利用函数图像读出结果即可【题目详解】根据数形结合可得x>2时,函数y<0,故一元一次不等式kx+b<0的解集为x>2,选B【题目点拨】本题考查一次函数与不等式的关系,本题关键在于利用数形结合读出答案4、D【解题分析】

解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.【题目点拨】本题考查一次函数的图象及一次函数与不等式.5、C【解题分析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.6、D【解题分析】

根据线段垂直平分线的性质得出AD=BD,推出CD+BD=5,即可求出答案.【题目详解】解:∵DE是AB的垂直平分线,

∴AD=DB,

∵AC=5,

∴AD+CD=5,

∴CD+BD=5,

∵BC=4,

∴△BCD的周长为:CD+BD+BC=5+4=9,

故选D.【题目点拨】本题考查了线段垂直平分线的性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.7、A【解题分析】

取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【题目详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.【题目点拨】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.8、D【解题分析】

根据平均数的定义分别计算甲乙的平均数,然后根据方差的计算公式分别计算甲乙的方差即可.【题目详解】∵x甲=x乙=170+176+173+174+180+177∴x甲s甲2=s乙=(170-175)2∴s甲故选D.【题目点拨】此题主要考查了算术平均数与方差的求法,正确记忆方差公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],是解决问题的关键9、D【解题分析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.10、B【解题分析】

找出方程的二次项系数,一次项系数,以及常数项即可.【题目详解】方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【题目点拨】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项二、填空题(每小题3分,共24分)11、【解题分析】

把变形为,逆用积的乘方法则计算即可.【题目详解】原式===.故答案为:.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12、3【解题分析】

在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.【题目详解】在Rt△ABC中,∵AC=6,BC=8,∴AB==10,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=6,DE=DC,∠AED=∠C=90°,∴BE=AB-AE=10-6=4,设CD=x,则BD=8-x,在Rt△BDE中,∵BE2+DE2=BD2,∴42+x2=(8-x)2,解得x=3,即CD的长为3cm.故答案为3【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.13、1.1.【解题分析】

设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【题目详解】解:要保持利润率不低于10%,设可打x折.

则500×-400≥400×10%,

解得x≥1.1.

故答案是:1.1.【题目点拨】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.14、菱形【解题分析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【题目详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【题目点拨】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.15、2【解题分析】试题解析:原式故答案为16、40【解题分析】

根据平移的性质可得CF=BE=5,然后根据平行四边形的面积公式即可解答.【题目详解】由平移的性质可得:CF=BE=5,∵AB⊥BF,∴四边形ACFD的面积为:AB·CF=8×5=40,故答案为40.【题目点拨】本题考查了平移的性质和平行四边形面积公式,掌握平移的性质和平行四边形面积公式是解题的关键.17、±1.【解题分析】

利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2=a2±2ab+b2.【题目详解】∵100x2﹣kxy+49y2是一个完全平方式,∴k=±1.故答案为:±1.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18、4【解题分析】

根据黄金分割的概念把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.【题目详解】由题意得:AB⋅BC=AC2=4.故答案为:4.【题目点拨】此题考查黄金分割,解题关键可知与掌握其概念.三、解答题(共66分)19、(1)x=15;(2)x1=,x2=.【解题分析】

(1)先把分式方程转化成整式方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【题目详解】解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),解得:x=15,检验:当x=15时,x﹣7≠0,所以x=15是原方程的解,即原方程的解是x=15;(2)2x2﹣2x﹣1=0,b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,x=,x1=,x2=.【题目点拨】本题考查了分式方程及一元二次方程的解法,解题的关键是熟悉分式方程及一元二次方程的解法,注意分式方程必须要检验.20、(1)见解析(2)(-1,-2)(3)P(-134,0)【解题分析】

(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.【题目详解】(1)如图所示,△A1B1C(2)如图所示,点Q即为所求,坐标为(-1,-2)(3)如图所示,P即为所求,设A’B的解析式为y=kx+b,将A’(-4,-1),B(-1,3)代入得-1=-4k+b解得k=∴A’B的解析式为y=43x+13当y=0,时,43x+133=0,解得∴P(-134,0)【题目点拨】此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.21、(1)(2)7(3)25分钟【解题分析】

试题分析:(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度=km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,S与t的函数关系式为S=2t﹣20,当S=30时,30=2t﹣20,解得t=25,即该汽车行驶30千米的时间为25分钟.考点:一次函数的应用.22、(1)3;(2).【解题分析】

(1)先去括号,再合并同类二次根式即可;(2)先化简,再合并同类二次根式即可.【题目详解】(1)原式==;(2)原式==.【题目点拨】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再合并同类二次根式即可.同类二次根式的合并方法是把系数相加减,被开方式和根号不变.23、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析【解题分析】

(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【题目详解】(1)∵直线y=1x+1交x轴于A,交y轴于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:过点A作AH⊥DB,如图,∵A(-1,0),D(0,1)∴AD===AB,∵四边形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1【题目点拨】此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.24、经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;经过3秒时,S取得最小值27平方厘米.【解题分析】

(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.【题目详解】设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:,即,整理得,解得:,.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;依题意得,,即,当,即时,.答:经过3秒时,S取得最小值27平方厘米.【题目点拨】此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25、(1)12;(2)A1(﹣2,﹣3),B1(3,﹣3),C1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论