![2024届福建省晋江市数学八下期末经典试题含解析_第1页](http://file4.renrendoc.com/view11/M01/26/38/wKhkGWXQMeiAdA3hAAILb65anaQ743.jpg)
![2024届福建省晋江市数学八下期末经典试题含解析_第2页](http://file4.renrendoc.com/view11/M01/26/38/wKhkGWXQMeiAdA3hAAILb65anaQ7432.jpg)
![2024届福建省晋江市数学八下期末经典试题含解析_第3页](http://file4.renrendoc.com/view11/M01/26/38/wKhkGWXQMeiAdA3hAAILb65anaQ7433.jpg)
![2024届福建省晋江市数学八下期末经典试题含解析_第4页](http://file4.renrendoc.com/view11/M01/26/38/wKhkGWXQMeiAdA3hAAILb65anaQ7434.jpg)
![2024届福建省晋江市数学八下期末经典试题含解析_第5页](http://file4.renrendoc.com/view11/M01/26/38/wKhkGWXQMeiAdA3hAAILb65anaQ7435.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省晋江市数学八下期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是()A.③④②① B.③④①② C.①②③④ D.④③①②2.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有()A.17人 B.15人 C.13人 D.5人3.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,44.下列根式中,属于最简二次根式的是()A.- B. C. D.5.在反比例函数y图象的每个象限内,y随x的增大而减少,则k值可以是()A.3 B.2 C.1 D.﹣16.在函数y=中,自变量x的取值范围是()A.x≥-3且x≠0 B.x<3C.x≥3 D.x≤37.把n边形变为边形,内角和增加了720°,则x的值为()A.6 B.5 C.4 D.38.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是()A.斜边长为10cm B.周长为25cmC.面积为24cm2 D.斜边上的中线长为5cm9.如图,ΔABC中,∠A=90°,∠C=30°,BD平分∠ABC交AC于D,若BD=2,则ΔABC的面积为()A.332 B.33 C.10.下列根式中属最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.12.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.13.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.14.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.15.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.16.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________17.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.18.如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.三、解答题(共66分)19.(10分)计算(1)(2)(3)(4)(+3﹣2)×220.(6分)实数、在数轴上的位置如图所示,化简:21.(6分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?22.(8分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为;(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为.23.(8分)平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).(1)点A的坐标为_____;(2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y=(x>0)的图象上,则该菱形向上平移的距离为_____.24.(8分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?25.(10分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为的比例计入每人的最后总分,有4位应聘者的得分如下所示:项目得分应聘者专业知识英语水平参加社会实践与社团活动等A858590B858570C809070D809050(1)写出4位应聘者的总分;(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?26.(10分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类。学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图。请你结合图中信息,解答下列问题:(1)本次共调查了___名学生;(2)被调查的学生中,最喜爱丁类图书的有___人,最喜爱甲类图书的人数占本次被调查人数的___%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人。
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【题目详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【题目点拨】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.2、D【解题分析】
频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.【题目详解】解:本班O型血的有:50×0.1=5(人),故选:D.【题目点拨】本题考查了频率与频数,正确理解频率频数的意义是解题的关键.3、C【解题分析】
判断是否为直角三角形,只要验证较短两边长的平方和等于最长边的平方即可.【题目详解】A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、52+42≠52,故不能组成直角三角形,错误.故选:C.【题目点拨】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.4、B【解题分析】试题解析:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误;故选B.考点:最简二次根式.5、A【解题分析】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案.【题目详解】根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.【题目点拨】本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.6、D【解题分析】
根据二次根式有意义的条件解答即可.【题目详解】由题意得3-x≥0,解得:x≤3,故选D.【题目点拨】本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.7、C【解题分析】
根据内角和公式列出方程即可求解.【题目详解】把n边形变为边形,内角和增加了720°,根据内角和公式得(n+x-2)×180°-(n-2)×180°=720°,解得x=4,故选C.【题目点拨】此题主要考查多边形的内角和公式,解题的关键是熟知公式的运用.8、B【解题分析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;∴斜边故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.9、A【解题分析】
由BD平分∠ABC可得∠1=∠2=30°,故BD=CD=2,利用30°的RtΔABD可得AD=12BD=1可得AC=AD+CD=3,根据勾股定理可得:AB=3【题目详解】∵ΔABC中,∠A=90°,∠C=30°∴∠ABC=60°∵BD平分∠ABC∴∠1=∠2∴∠1=∠C∴BD=CD=2∵BD=2,∠1=30°∴AD=12∴AC=AD+CD=1+2=3根据勾股定理可得:AB=3∴S△ABC故选:A【题目点拨】本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.10、A【解题分析】试题分析:最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A考点:最简二次根式二、填空题(每小题3分,共24分)11、6【解题分析】
如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【题目详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【题目点拨】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、AC⊥BDAC=BDAC⊥BD且AC=BD【解题分析】
先证明四边形EFGH是平行四边形,(1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直(2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等(3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等【题目详解】解:连接AC、BD.∵E、F、G、H分别是AB、BC、CD、DA边上的中点,∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.∴EF∥HG,EF=GH,FG∥EH,FG=EH.∴四边形EFGH是平行四边形;(1)要使四边形EFGH是矩形,则需EF⊥FG,由(1)得,只需AC⊥BD;(2)要使四边形EFGH是菱形,则需EF=FG,由(1)得,只需AC=BD;(3)要使四边形EFGH是正方形,综合(1)和(2),则需AC⊥BD且AC=BD.故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD【题目点拨】此题主要考查平行四边形,矩形,菱形以及正方形的判定条件13、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解题分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【题目详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【题目点拨】此题考查正方形的判定,解题关键在于掌握判定法则14、-1【解题分析】
根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【题目详解】当x=0时,y=m•0-1=-1,
∴两函数图象与y轴的交点坐标为(0,-1),
把点(0,-1)代入第一个函数解析式得,m=-1.
故答案为:-1.【题目点拨】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.15、75°【解题分析】
根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【题目详解】∵∠ACB=90°,
∴∠MCD=90°,
∵∠D=60°,
∴∠DMC=30°,
∴∠AMF=∠DMC=30°,
∵∠A=45°,
∴∠1=∠A+∠AMF=45°+30°=75°,
故选:C.【题目点拨】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.16、L【解题分析】
由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.【题目详解】前4分钟的每分钟的进水量为20÷4=5,每分钟的出水量为5-(30-20)÷8=.故答案为L.【题目点拨】从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.17、35.【解题分析】
利用四边形内角和得到∠BAD’,从而得到∠α【题目详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35【题目点拨】本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补18、(3,0)【解题分析】
∵点C与点E关于x轴对称,E点的坐标是(7,),∴C的坐标为(7,).∴CH=,CE=,∵△ACE是以ABCD的对角线AC为边的等边三角形,∴AC=.∴AH=1.∵OH=7,∴AO=DH=2.∴OD=3.∴D点的坐标是(3,0).三、解答题(共66分)19、(1)(2)(3)(4)1+1【解题分析】分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2)运用平方差及完全平方式解答即可.(3)将二次根式化为最简,然后再进行同类二次根式的合并即可.(4)先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)原式=(2)原式=(3)原式=2﹣2+﹣=﹣;(4)(+3﹣2)×2=(+)×2=1+1.点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.20、-2【解题分析】
先由数轴判断,,,然后根据二次根式及绝对值的性质化简即可.【题目详解】解:由数轴可知,,∴原式【题目点拨】本题考查了二次根式及绝对值的性质,通过数轴判定相关式子的符号并运用性质化简是解题的关键.21、不是,理由见解析.【解题分析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【题目详解】解:如图,设梯子下滑至CD,∵Rt△OAB中,AB=2.5m,AO=2.4m,
∴OB=m,同理,Rt△OCD中,
∵CD=2.5m,OC=2.4-0.4=2m,
∴OD=m,∴BD=OD-OB=1.5-0.7=0.8(m).
答:梯子底端B向外移了0.8米.【题目点拨】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22、(1)Q;(2)-;(3)(-4,),(-,4);(4)1【解题分析】
(1)根据“垂点”的意义直接判断即可得出结论;(2)根据“垂点”的意义建立方程即可得出结论;(3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;(4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.【题目详解】解:(1)∵P(1,2),∴1+2=3,1×2=2,∵2≠3,∴点P不是“垂点”,∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.∵N(,﹣1),∴+1=×1=,∵,∴点N不是“垂点”,故答案为Q;(2)∵点M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,故答案为﹣;(3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,∵“垂点矩形”的面积为,∴﹣ab=.即:﹣a+b=﹣ab=,解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),故答案为(﹣4,)或(﹣,4),.(4)设点E(m,0)(m>0),∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,故答案为1.【题目点拨】本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.23、(1)(3,4)(2)2或8【解题分析】
(1)根据菱形的对称性,得A(3,4)(2)则反比例函数为则B(6,0),若点B向上平移到反比例函数上.则B(6,2),即向上平移2个单位;若点C在反比例函数上,则C(3,4),即向上平移8个单位.故该菱形向上平移的距离为2或8.24、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.【解题分析】试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.试题解析:解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.由题意得:,解得:答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分当一名熟练工一个月加工型服装件时,则还可以加工型服装件.又∵≥,解得:≥,随着的增大则减小∴当时,有最大值.∴该服装公司执行规定后违背了广告承诺..考点:方程组,函数应用25、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年陈梦与刘阳离婚协议书策划模板
- 双边教育合作谅解协议书模板
- 2025年市场调研与分析咨询服务委托协议
- 2025年供应商与装修企业合作框架协议
- 2025年企业合同解除操作规范
- 2025年劳动合同标准范本分享
- 2025年仓储粮食管理协议
- 2025年住宅物业购买补充协议
- 2025年劳动人员雇佣协议
- 2025年八人合伙企业股权分配协议书
- (完整)PEP人教版小学生英语单词四年级上册卡片(可直接打印)
- 面神经疾病课件
- 汉代儒学大师董仲舒思想课件
- 普通冲床设备日常点检标准作业指导书
- 科技文献检索与利用PPT通用课件
- 《红楼梦讲稿》PPT课件
- DB33∕T 628.1-2021 交通建设工程工程量清单计价规范 第1部分:公路工程
- 吉祥喜金刚现证中品事业六支妙严(节录)
- 国民中小学九年一贯课程纲要语文学习领域(国语文)
- 最全的人教初中数学常用概念、公式和定理
- 桥面结构现浇部分施工方案
评论
0/150
提交评论