江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第1页
江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第2页
江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第3页
江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第4页
江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安市吴有训实验学校2024届八年级数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等2.如图,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB,AC的距离相等;③∠BDE=∠CDF;④∠1=∠2;其中正确的有()A.1个 B.2个 C.3个 D.4个3.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.64.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个5.下列式子:,,,,其中分式的数量有()A.1个 B.2个 C.3个 D.4个6.矩形具有而菱形不一定具有的性质是()A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直7.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CD B.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BC D.由AD∥BC,可以推出∠3=∠78.关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣89.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.2 B.3 C.4 D.810.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次二、填空题(每小题3分,共24分)11.已知一次函数y=﹣2x+5,若﹣1≤x≤2,则y的最小值是_____.12.如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.13.如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.14.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.15.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2018BC和∠A2018CD的平分线交于点A2019,得∠A2019,则∠A2019=_____°.16.当________时,的值最小.17.如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,则EC的长为_________.18.若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.三、解答题(共66分)19.(10分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O中心对称图形△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.20.(6分)已知:将矩形绕点逆时针旋转得到矩形.(1)如图,当点在上时,求证:(2)当旋转角的度数为多少时,?(3)若,请直接写出在旋转过程中的面积的最大值.21.(6分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.22.(8分)如图,已知是的中线,且求证:若,试求和的长23.(8分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?24.(8分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:月用水量()1013141718户数22321如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)25.(10分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?26.(10分)如图,在平面直角坐标系中,▱ABCD,顶点A1,1,B5,1(1)点C的坐标是______,对角线AC与BD的交点E的坐标是______.(2)①过点A1,1的直线y=kx-3k+4的解析式是______②过点B5,1的直线y=kx-3k+4的解析式是______③判断①、②中两条直线的位置关系是______.(3)当直线y=kx-3k+4平分▱ABCD的面积时,k的值是______.(4)一次函数y=kx-2k+1的图像______(填“能”或“不能”)平分▱ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【题目详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.2、C【解题分析】试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.3、C【解题分析】试题解析:设多边形有n条边,由题意得:110°(n-2)=360°×3,解得:n=1.故选:C.4、D【解题分析】

根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.【题目详解】解:根据图象y1=kx+b经过第一、二、四象限,∴k<1,b>1,故①正确,④错误;∵y2=x+a与y轴负半轴相交,∴a<1,故②错误;当x<4时图象y1在y2的上方,所以y1>y2,故③错误.所以正确的有①共1个.故选D.【题目点拨】此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.5、B【解题分析】

根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【题目详解】解:,是分式,共2个,

故选:B.【题目点拨】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.6、C【解题分析】

根据菱形和矩形的性质即可判断.【题目详解】解:因为矩形的性质:对角相等、对边相等、对角线相等;菱形的性质:对角相等、对边相等、对角线互相垂直.所以矩形具有而菱形不一定具有的性质是对角线相等.故选:C.【题目点拨】本题主要考查矩形和菱形的性质,掌握矩形和菱形的性质是解题的关键.7、B【解题分析】

根据平行线的判定以及性质,对各选项分析判断即可利用排除法求解.【题目详解】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;

B、由AB∥CD,可以推出∠4=∠8,故本选项错误;

C、由∠2=∠6,可以推出AD∥BC,故本选项正确;

D、由AD∥BC,可以推出∠3=∠7,故本选项正确.

故选B.【题目点拨】本题考查了平行线的判定与性质,找准构成内错角的截线与被截线是解题的关键.8、C【解题分析】

利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【题目详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.【题目点拨】本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1

时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.9、C【解题分析】

直接利用线段垂直平分线的性质得出AD=CD,进而结合已知角得出DC,BC的长,进而利用勾股定理得出答案.【题目详解】连接DC,在Rt△BCA中,∵DE为AC的垂直平分线,∴AD=CD,∴∠A=∠DCA=30°,∴∠BDC=60°,在Rt△CBD中,BD=2,,解得:DC=4,BC=2,在Rt△CBA中,BC=2,AC=2BC=4故选C.【题目点拨】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC的长是解题关键.10、B【解题分析】

根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、1【解题分析】

根据一次函数的性质得出其增减性,进而解答即可.【题目详解】解:∵一次函数y=﹣2x+5,k=﹣2<0,∴y随x的增大而减小,∵﹣1≤x≤2,∴当x=2时,y的最小值是1,故答案为:1【题目点拨】此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键.12、3.【解题分析】

运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.【题目详解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF当AG⊥BF,时AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案为3【题目点拨】本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.13、1【解题分析】

根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答.【题目详解】解:在矩形ABCD中,,,,,又,.故答案为:1.【题目点拨】此题考查矩形的性质,解题关键在于利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质.14、y=x+3【解题分析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【题目点拨】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).15、【解题分析】

根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,然后整理得到∠A1=∠A;【题目详解】∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,由三角形的外角性质,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,(∠A+∠ABC)=∠A1+∠A1BC=∠A1+∠ABC,整理得,∠A1=∠A=×m°=°;同理可得∠An=()n×m,所以∠A2019=()2019×m=.故答案是:.【题目点拨】考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的是解题的关键.16、【解题分析】

根据二次根式的意义和性质可得答案.【题目详解】解:由二次根式的性质可知,当时,取得最小值0故答案为:2【题目点拨】本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”17、3cm【解题分析】【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.【题目详解】∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC-BF=4,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8-x)2,解得x=3,即CE=3cm,故答案为:3cm.【题目点拨】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.18、1【解题分析】

求出x1,x2即可解答.【题目详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∵x1<x2,∴解得:x1=0,x2=1,则x2﹣x1=1﹣0=1.故答案为:1.【题目点拨】本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.三、解答题(共66分)19、(1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)【解题分析】

(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.【题目详解】(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).【题目点拨】本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.20、(1)详见解析;(2)当旋转角的度数为时,;(3)【解题分析】

(1)由旋转的性质和矩形的性质,找出证明三角形全等的条件,根据全等三角形的性质即可得到答案;(2)连接,由旋转的性质和矩形的性质,证明,根据全等三角形的性质即可得到答案;(3)根据题意可知,当旋转至AG//CD时,的面积的最大,画出图形,求出面积即可.【题目详解】(1)证明:矩形是由矩形旋转得到的,,,又,∴,,;(2)解:连接矩形是由矩形旋转得到的,,,,∴,,即,;,,,当旋转角的度数为时,;(3)解:如图:当旋转至AG//CD时,的面积的最大,∵,∴,,∴;∴的面积的最大值为.【题目点拨】本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,以及三角形的面积公式,解题的关键是熟练掌握旋转的性质,矩形的性质,全等三角形的判定和性质,正确做出辅助线,利用所学的性质进行求解.注意利用数形结合的思想进行解题.21、(1),5,,;(2)直角三角形.【解题分析】

(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.【题目详解】解:(1)由勾股定理得AB==,BC==5,CD==2;(2)∵AC==2,AD==2,∴AC=AD,∴△ACD是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC是直角三角形.【题目点拨】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.22、(1)见解析;(2)【解题分析】

(1)通过利用等角的补角相等得到,又已知,即可得证(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD【题目详解】证明:解:是的中线由得【题目点拨】本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段23、(1)(2)3小时【解题分析】

(1)设,根据题意得,解得(2)当时,∴骑摩托车的速度为(千米/时)∴乙从A地到B地用时为(小时)【题目详解】请在此输入详解!24、该小区居民每月共用水约为立方米.【解题分析】

根据平均数的概念计算,并用样本平均数去计算该小区居民每月用水量.【题目详解】解:由已知得:10户家庭平均每户月用水量为(立方米)答:该小区居民每月共用水约为立方米.【题目点拨】考查了平均数的计算和用样本估计总体的知识,解题关键是抓住用样本平均数去计算该小区居民每月用水量.25、(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解题分析】

(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;

(2)计算出甲乙两人的方差,比较大小即可做出判断;

(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【题目详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,1,1,8,9,9,10,则平均数为(环),中位数为1.2环,方差为.由图和表可得甲的射击成绩为9,6,1,6,2,1,1,8,9,平均数为1环.则甲第8次成绩为(环).所以甲的10次成绩为2,6,6,1,1,1,8,9,9,9,中位数为1环,方差为.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲140乙12.41甲、乙射击成绩折线统计图(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第2次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第2次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【题目点拨】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.26、(1)3,-1;(2)①y=32x-12;②y=-32x+172;【解题分析】

(1)根据平行四边形的性质以及A、B两点的坐标可得CD∥AB∥x轴,CD=AB=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论