2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题含解析_第1页
2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题含解析_第2页
2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题含解析_第3页
2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题含解析_第4页
2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省威海乳山市数学八年级第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列实数中,无理数是()A. B. C. D.2.如果分式有意义,那么x的取值范围是()A.x≠-1 B.x=-1 C.x≠1 D.x>13.如图,在ΔABC中,分别以点A,C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则ΔABDA.7 B.8 C.9 D.104.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A. B. C. D.5.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是()A.25;25B.29;25C.27;25D.28;257.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等8.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.9.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2

B.b=1

C.a≠2且b=1

D.a,b可取任意实数10.如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C.若∠ACB=∠AC'B'=90°,AC=BC=3,则B'C的长为()A.33 B.6 C.32 D.2111.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤12.一次函数y=-2x-1的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.14.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.15.分解因式:=______.16.“同旁内角互补,两直线平行”的逆命题是_____________________________.17.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.18.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.三、解答题(共78分)19.(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.20.(8分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.21.(8分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形(1)如图,当四边形为正方形时,求,的值;(2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.22.(10分)如图,在R△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=4,CE=10,求CD的长.23.(10分)如图,在△ABC中,AB=13,BC=21,AD=12,且AD⊥BC,垂足为点D,求AC的长.24.(10分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化的面积的2倍,并且在独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)甲、乙两个工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.5万元,乙队为0.3万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?25.(12分)解分式方程:(1);(2)=1;26.某校为了了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据无理数、有理数的定义即可判定选择项.【题目详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【题目点拨】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、C【解题分析】

根据分式有意义的条件,分母不等于0列不等式求解即可.【题目详解】解:由题意,得x-1≠0,

解得x≠1,

故选:C.【题目点拨】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题的关键.3、A【解题分析】

利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.【题目详解】解:由作法得MN垂直平分AC,如图,

∴DA=DC,

∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.

故选:A.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.4、A【解题分析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=,∴MD=MB=2a-b=,∴.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.5、C【解题分析】

根据轴对称和中心对称图形的概念可判别.【题目详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C6、C【解题分析】25出现了2次,出现的次数最多,则众数是25;把这组数据从小到大排列25,25,27,29,30,最中间的数是27,则中位数是27;故选C.7、D【解题分析】

根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D.【题目详解】A.过直线外一点有且只有一条直线与这条直线平行,正确.B.平行于同一直线的两条直线平行,正确;C.直线y=2x−1与直线y=2x+3一定互相平行,正确;D.如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选D.【题目点拨】本题考查的知识点是命题与定理,解题关键是通过举反例证明命题的正确性.8、A【解题分析】试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:A.9、C【解题分析】解:根据正比例函数的定义得:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.点睛:本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解答此题的关键.10、A【解题分析】

根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算即可.【题目详解】∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+B∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=AC故选A.【题目点拨】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.11、C【解题分析】

利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【题目详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【题目点拨】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.12、D【解题分析】∵-2<0,-1<0,∴图像经过二、三、四象限,故选D.二、填空题(每题4分,共24分)13、120【解题分析】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.【题目详解】设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120,经检验x=120是原分式方程的根,故答案为:120.【题目点拨】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.14、2.10【解题分析】由题意可知,将木块展开,

相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为:故答案是:2.1.15、x(x+2)(x﹣2).【解题分析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.16、两直线平行,同旁内角互补【解题分析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.详解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,

故答案为两直线平行,同旁内角互补.点睛:考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17、(2,5)【解题分析】

∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).18、45°【解题分析】如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.三、解答题(共78分)19、(1)见解析;(2)见解析.【解题分析】

(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【题目详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2)证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【题目点拨】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.20、见详解,【解题分析】

先画出图形,再根据图形列式分解即可.【题目详解】解:如图,【题目点拨】此题主要考查了因式分解,正确的画出图形是解决问题的关键.21、见详解.【解题分析】

(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;

(2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【题目详解】解:(1)如图1,过点D作DE⊥y轴于E,

∴∠AED=∠AOB=90°,

∴∠ADE+∠DAE=90°,

∵四边形ABCD是正方形,

∴AD=AB,∠BAD=90°,

∴∠DAE+∠BAO=90°,

∴∠ADE=∠BAO,

在△ABO和△ADE中,,

∴△ABO≌△ADE,

∴DE=OA,AE=OB,

∵A(0,3),B(m,0),D(n,1),

∴OA=3,OB=m,OE=1,DE=n,

∴n=3,

∴OE=OA+AE=OA+OB=3+m=1,

∴m=1;(2))如图3,由矩形的性质可知,BD=AC,

∴BD最小时,AC最小,

∵B(m,0),D(n,1),

∴当BD⊥x轴时,BD有最小值1,此时,m=n,

即:AC的最小值为1,

连接BD,AC交于点M,过点A作AE⊥BD于E,

由矩形的性质可知,DM=BM=BD=2,

∵A(0,3),D(n,1),

∴DE=1,

∴EM=DM-DE=1,

在Rt△AEM中,根据勾股定理得,AE=,

∴m=,即:

当m=时,矩形ABCD的对角线AC的长最短为1.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.22、CD=8.【解题分析】

根据直角三角形的性质得出AE=CE=10,进而得出DE=6,利用勾股定理解答即可.【题目详解】∵,为边上的中线,∴.∵,∴.又∵为边上的高,∴.【题目点拨】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.23、20.【解题分析】

依据勾股定理,即可得到BD和CD的长,进而得出AC.【题目详解】∵AB=13,AD=12,AD⊥BC,∴,∵BC=21,∴CD=BC-BD=16,∴.【题目点拨】本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.24、(1)甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)至少应安排甲队工作10天.【解题分析】

(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据“在独立完成面积为600m1区域的绿化时,甲队比乙队少用6天”,即可得出关于x的分式方程,解之并检验后,即可得出结论;(1)设安排甲工程队工作y天,则乙工程队工作天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小正整数即可.【题目详解】(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据题意得:,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论