2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨市名校八年级数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE2.在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是(

)A.S1>S2 B.S1=S2 C.S1<S2 D.无法判断3.实数a,b在数轴上的对应点如图所示,则|a﹣b|﹣的结果为()A.b B.2a﹣b C.﹣b D.b﹣2a4.下列从左到右的变形,是因式分解的是()A.2(a﹣b)=2a﹣2b B.C. D.5.已知点(-2,y1),(-1,y2),(4,y3)在函数y=8xA.y2<y1<y3 B.y1<y2<y3 C.y3<y1<y2 D.y3<y2<y16.如图,E为边长为2的正方形ABCD的对角线上一点,BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于R,则PQ+PR的值为()A. B. C. D.7.如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,则∠D=()A.144° B.110° C.100° D.108°8.下列命题正确的个数是()(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A.1 B.2 C.3 D.49.在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,1.则这8人体育成绩的中位数是()A.47 B.48.5 C.49 D.49.510.如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是()A. B. C.且 D.或二、填空题(每小题3分,共24分)11.若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.12.若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.13.已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)14.请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.15.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是_____.16.已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.17.如果关于x的分式方程有增根,那么m的值为______.18.已知,化简________三、解答题(共66分)19.(10分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?20.(6分)如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD平分线于点F.(1)请说明:PE=PF;(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?21.(6分)先化简,再求值:,其中.22.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点坐标为.(1)画出关于轴对称的;(2)画出将绕原点逆时针旋转90°所得的;(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.23.(8分)在RtΔABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.24.(8分)如图,在中,,点、分别在边、上,且,,点在边上,且,联结.(1)求证:四边形是菱形;(2)如果,,求四边形的面积.25.(10分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.26.(10分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【题目详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.【题目点拨】本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.2、B【解题分析】【分析】先证四边形ABPE和四边形PFCG都是平行四边形,再利用平行四边形对角线平分四边形面积即可.【题目详解】因为,在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,所以,四边形边形ABPE和四边形PFCG都是平行四边形,所以,S△ABC=S△CDA,S△AEP=S△PHA,S△PFC=S△CGP,所以,S△ABC-S△AEP-S△PFC=S△CDA-S△PHA-S△CGP,所以,S△BFPH=S△DEPG,即:S1=S2故选:B【题目点拨】本题考核知识点:平行四边形性质.解题关键点:平行四边形对角线平分四边形面积.3、A【解题分析】

由数轴可知a<0<b,根据绝对值的性质和二次根式的性质化简即可.【题目详解】解:由数轴可知,a<0<b,则a﹣b<0,则|a﹣b|﹣=﹣a+b+a=b.故选:A.【题目点拨】本题考查的是绝对值和二次根式,熟练掌握绝对值的性质和二次根式的性质是解题的关键.4、D【解题分析】

根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【题目详解】解:由因式分解的定义可知:A.2(a﹣b)=2a﹣2b,不是因式分解,故错误;B.,不是因式分解,故错误;C.,左右两边不相等,故错误;D.是因式分解;故选:D【题目点拨】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.5、A【解题分析】

把x的取值分别代入函数式求y的值比较即可.【题目详解】解:由y=8x得,y1=8-2=-4,

y2=8-1=-8,

y3=84=2,∴y2<y1故答案为:A【题目点拨】本题考查了函数值的大小比较,已知自变量值比较函数值有3种方法,①根据函数解析式求出函数值直接比较;②根据函数性质比较;③画出函数图像进行比较,其中①是最容易掌握的方法.6、B【解题分析】

连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.【题目详解】解:如图,连接BP,设点C到BE的距离为h,

则S△BCE=S△BCP+S△BEP,

即BE•h=BC•PQ+BE•PR,

∵BE=BC,

∴h=PQ+PR,

∵正方形ABCD的边长为2,

∴h=2×.

故选B.【题目点拨】本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.7、D【解题分析】

根据两直线平行,同旁内角互补求出∠B,再根据等腰三角形两底角相等求出∠ACB,然后根据两直线平行,内错角相等可得∠DAC=∠ACB,再根据等腰三角形两底角相等列式计算即可得解.【题目详解】∵AD∥BC,∴∠B=180°﹣∠BAD=180°﹣108°=72°,∵BC=AC,∴∠BAC=∠B=72°,∴∠ACB=180°﹣2×72°=36°,∵AD∥BC,∴∠DAC=∠ACB=36°,∵AD=CD,∴∠DCA=∠DAC=36°,∴∠D=180°﹣36°×2=108°,故选D.【题目点拨】本题考查了等腰三角形的性质,平行线的性质,熟练掌握相关知识是解题的关键.8、C【解题分析】

根据完全平方式、正六边形、平行四边形的判定判断即可【题目详解】(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;故选C【题目点拨】此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键9、B【解题分析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【题目详解】这组数据的中位数为.故选:B.【题目点拨】本题考查了中位数的知识,解答本题的关键是掌握中位数的定义,注意在求解前观察:数据是否按大小顺序排列.10、D【解题分析】

首先根据点坐标求出函数解析式,然后列出不等式,反比例函数自变量不为0,分两类讨论,即可解题.【题目详解】解:由已知条件,将点代入反比例函数解析式,可得,即函数解析式为∵∴∴当时,解得;当时,解得,即,∴的取值范围是或故答案为D.【题目点拨】此题主要考查反比例函数和不等式的性质,注意要分类讨论.二、填空题(每小题3分,共24分)11、9【解题分析】

设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.【题目详解】设多边形的边数为n,由题意得(n-2)·180°=900°解得n=7,则它的边长是63÷7=9.【题目点拨】本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.12、4【解题分析】

因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【题目详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4【题目点拨】解答本题的关键是确定x的值,即灵活应用中位数概念.13、61.8m或38.2m【解题分析】由于C为线段AB=100cm的黄金分割点,则AC=100×61.8m或AC=100-38.238.2m.14、等边三角形的三个角都相等.【解题分析】

把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【题目详解】“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,故答案为:等边三角形的三个角都相等.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.15、x=1,y=1【解题分析】

由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【题目详解】解:函数y=ax+b和y=kx的图象交于点P(1,1)即x=1,y=1同时满足两个一次函数的解析式.所以,方程组的解是,故答案为x=1,y=1.【题目点拨】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16、3【解题分析】

将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.【题目详解】∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,∴a+b=3,ab=1,∴==3.故答案是:3.【题目点拨】考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.17、-4【解题分析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【题目详解】解:,去分母,方程两边同时乘以,得:,由分母可知,分式方程的增根可能是2,当时,,.故答案为.【题目点拨】考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.18、【解题分析】

根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【题目详解】∵a<0<b,∴|a−b|=b−a.故答案为:.【题目点拨】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.三、解答题(共66分)19、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【解题分析】

(1)观察图象,可知最高温度为37℃,时间为15时;(2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;(3)观察图象可求解.【题目详解】解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;(2)∵最高温是15时37℃,最低温是3时23℃,∴温差为:,则经过的时间为::(时);(3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【题目点拨】本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.20、(1)详见解析;(2)当点P在AC中点时,四边形AECF是矩形,理由详见解析.【解题分析】

(1)首先证明∠E=∠2根据等角对等边可得EP=PC,同理可得PF=PC,进而得到EP=PF;(2)当点P在AC中点时,四边形AECF是矩形,首先根据对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,再证明∠ECF=90°即可.【题目详解】(1)∵CE平分∠BCA,∴∠1=∠2,∵EF∥BC,∴∠E=∠1,∴∠E=∠2,∴EP=PC,同理PF=PC,∴EP=PF;(2)结论:当点P在AC中点时,四边形AECF是矩形,理由:∵PA=PC,PE=PF,∴四边形AECF是平行四边形,∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ECF=90°,∴平行四边形AECF是矩形.【题目点拨】本题考查了等腰三角形的判定与性质,平行四边形的判定,矩形的判定,熟练掌握相关知识是解题的关键.21、,1【解题分析】

先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.【题目详解】解:当x=-2时,原式=24-1=1.【题目点拨】本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.22、(1)见解析;(2)见解析;(3)能,图见解析;【解题分析】

(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;

(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;

(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.【题目详解】(1)如图所示:(2)如图所示:

(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.【题目点拨】此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23、(1)见解析;(2)见解析【解题分析】

(1)根据已知条件易证ΔAFE≅ΔDBE,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF=CD,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得AD=12BC=DC,由一组邻边相等的平行四边形为菱形即可判定四边形【题目详解】(1)证明:如图,∵AF//BC,∴∠AFE=∠DBE,∵ΔABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD,在ΔAFE和ΔDBE中,∠AFE=∠DBE∠FEA=∠BED∴ΔAFE≅Δ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论